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Introduction 
 
Tanh-Sinh quadrature is a method for numerical integration introduced by Hidetoshi Takahashi 
and Masatake Mori [1]. The method uses the tanh and sinh hyperbolic functions in a change of 
variable to transform the (−1, +1) open interval of the integral to an open interval on the entire 
real line (−∞,+∞). Singularities at one or both endpoints of the (−1, +1) interval are mapped to 
the (−∞,+∞) endpoints of the transformed interval, forcing the endpoint singularities to vanish. 
This makes the method quite insensitive to endpoint behavior, resulting in a significant 
enhancement of the accuracy of the numerical integration procedure compared to quadrature 
formulas that are based on the trapezoidal or midpoint rules with equidistant grids [5]. In most 
cases, the transformed integrand displays a rapid roll-off (decay) at a double exponential rate, 
enabling the numerical integrator to quickly achieve convergence [5]. This method is therefore 
also known as the Double Exponential (DE) formula [2,4]. Implementations of the DE methods 
can be found in popular open source math libraries, such as Boost for C++ and mpmath for 
Python, as well as in popular open source calculator software such as for the WP-34S. 
 
The Tanh-Sinh method has an advantage to integrate smooth functions that are holomorphic (are 
at least differentiable), such as transcendental functions. Especially integrands with L- and U-
shapes, where most of the integral’s mass is located at one or both interval endpoints, are rapidly 
integrated with a high accuracy. Having said that, the choice to use Tanh-Sinh in practice may 
depend on the required error tolerance (eps) and the properties of the integrands. For rough error 
tolerance eps between 10!" and 10!#, Romberg and Adaptive Simpson are reasonably good 
general-purpose integrators over closed intervals. However, Tanh-Sinh favorably compares to 
these methods when integrating smooth functions with a high accuracy of the integral with over 
six digits precision 𝑒𝑝𝑠 < 10!#. 
 
A modification of the Tanh-Sinh formula was introduced by Krzysztof Michalski and Juan 
Mosig [2]. This modification simplifies the formulas for the abscissas and weights. This 
modification requires fewer arithmetic operations to speed up numerical integration. 
 
This article presents effective improvements to the Michalski & Mosig Tanh-Sinh quadrature 
method1. The improvements are compared the Boost, mpmath, and WP-34S implementations of 
the Tanh-Sinh method. In addition, a new Exp-Sinh pre-conditioning step is proposed to compute 
an optimal splitting point on the integration interval for this quadrature method. 

 
1 The C and BASIC source code presented in this document (excluding the code and examples shown in Appendix 
A and C) may be distributed freely under the MIT license. 
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The Takahashi & Mori Tanh-Sinh quadrature formula 
 
The characteristic Tanh-Sinh distribution of abscissas xk (points) are defined by: 
 

𝑥$ = 	tanh	("
%
𝜋 sinh 𝑘ℎ) 

 
The weights wk are defined by: 
 

𝑤$ =	
"
%ℎ𝜋 cosh 𝑘ℎ

cosh%("%𝜋 sinh 𝑘ℎ)
 

 
For a given step size h the integral is approximated by: 
 

8 𝑓(𝑥)	𝑑𝑥	 ≈ 	 < 𝑤$𝑓(𝑥$)
&

$'!&

"

!"
 

 
The open interval (−1, +1) can be adjusted with a change in variable to integrate function f over 
any finite interval. 
 
 
Comparing Tanh-Sinh to Romberg and Adaptive Simpson 
 
The following five graphs show the distribution of the characteristic Tanh-Sinh abscissas to the 
points generated by the Romberg and Adaptive Simpson methods. Each graph shows the 
locations of abscissas (y-axis) on the interval (0,1) to compute ∫ (

")*!
𝑑𝑥"

+  are shown over time 
(x-axis) for each integration method to reach convergence for a relatively high error threshold 
𝑒𝑝𝑠 = 10!,: 
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Because the error threshold is deliberately high in this comparison, requiring only a few digits of 
precision, Tanh-Sinh does not outperform the Romberg and Adaptive Simpson methods in this 
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example. However, when the error threshold is further restricted to increase the accuracy of the 
integral, Tanh-Sinh typically outperforms most other quadrature methods. 
 
Let’s see what the performance of Tanh-Sinh is in practice for a variety of integrands. We pick a 
collection of 21 arbitrary functions that range from easy to very hard to integrate numerically. 
 
The following table shows the performance of Tanh-Sinh with the default n=6 levels compared 
to Romberg (trapezoidal with max n=16 levels), Adaptive Simpson (max n=16 levels) and 
Adaptive Gauss-Kronrod (G10,K21) (max n=10 levels, 𝑡𝑜𝑙 = 10!-) for ∫ 𝑓(𝑥)	𝑑𝑥"

+  with 
𝑒𝑝𝑠 = 10!. for all methods. Source code listings for Romberg, Adaptive Simpson and Adaptive 
Gauss-Kronrod (G10,K21) are included in Appendix D. These methods produce error 
estimations (relative or absolute), which are normalized to absolute errors in the table together 
with the number of points evaluated as pairs (function evaluations, estimated error). The “best 
results” are obtained when the error is low with the fewest function evaluations: 
 
 
# 

 
f(x) 

M. & M. Tanh-
Sinh improved 

Romberg 
Trapezoidal 

Adaptive 
Simpson 

Adaptive 
(G10,K21) 

1 x^3-2x^2+x (49,1e-13) (9,exact) (5,exact) (41,exact) 
2 1/(1+x) (58,1e-13) (33,2e-9) (97,6e-11) (41,3e-17) 
3 4/(1+x*x) (58,3e-14) (65.2e-11) (153,3e-11) (41,1e-16) 
4 acos(x) (58,exact) (32769,3e-8) (433,1e-10) (1763,1e-6) 
5 sin(x)/x (58,9e-16) (-,-) (-,-) (41,4e-16) 
6 sqrt(x/(1-x^2)) (120,7e-9) (-,-) (-,-) (2583,1) 
7 log(x)^2 (59,1e-13) (-,-) (-,-) (861,7e-2) 
8 1/sqrt(x) (63,1e-13) (-,-) (-,-) (861,2) 
9 1/sqrt(1-x) (120,6e-9) (-,-) (-,-) (861,2) 
10 x^-.8 (71,1e-14) (-,-) (-,-) (861,200) 
11 (1-x)^-.8 (487,5e-6) (-,-) (-,-) (861,200) 
12 1/sqrt(sin(pi*x)) (63,9e-9) (-,-) (-,-) (1599,2) 
13 sin(pi*x)^-.8 (534,1e-5) (-,-) (-,-) (1599,100) 
14 1/sqrt(-log(x)) (120,6e-9) (-,-) (-,-) (1927,2) 
15 1/sqrt(-log(1-x)) (120,6e-9) (-,-) (-,-) (2501,2) 
16 sin(pi*x*40) (315,2e-5) (9,5e-15) (5,2e-16) (41,2e-16) 
17 1/(1+25*x^2) (110,8e-12) (257,1e-10) (277,3e-11) (41,9e-13) 
18 1/(1+0.04*x^2) (58,1e-15) (17,1e-11) (33,3e-11) (41,2e-16) 
19 sqrt(abs(x-.5)) (410,1e-3) (32769,9e-8) (713,7e-11) (5863,1e-6) 
20 floor(10*x) (406,8e-3) (32769,4e-6) (345,3e-7) (123,6e-15) 
21 10*x-floor(10*x) (406,8e-3) (32769,4e-5) (345,3e-7)* (123,1e-16) 

Tanh-Sinh improved includes improvements proposed in this article 
(-,-) fails with floating point error due to f(x) singularities at endpoint(s) 
(points,error) large reported error, the method is not usable for this integrand 
(points,error)* wrong integration result 0.45 instead of 0.5, despite the low error estimate 

 
While this comparison does not offer a comprehensive comparison, it should be illustrative of 
the methods’ applicability and precision. Tanh-Sinh generally performs well for transcendental 
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functions and other smooth functions that are differentiable on an open integration interval. 
Periodic functions, such as integral #16, are not holomorphic and ill-suited for Tanh-Sinh. Non-
differentiable functions, such as integral #19, integral #20 (step function) and integral #21 (saw-
tooth function), pose serious problems for Tanh-Sinh. Integrals #19, #20 and #21 are "integration 
busters" that can fool a quadrature method into fitting a smooth polynomial to the function to 
approximate the integral, requiring many points (Romberg) or refinements with more points 
around sharp edges (Adaptive Simpson). Furthermore, Romberg (trapezoidal) and Adaptive 
Simpson require a closed interval. 
 
Note that Adaptive Simpson fails to correctly integrate integral #21, which is generally hard to 
integrate numerically. This failure is due to early termination of the recursive scheme when the 
convergence checks are satisfied. Decreasing eps to a minimum does not improve the result. 
Only forcing deeper recursion by modifying the convergence check corrects the problem. 
 
 
The Michalski & Mosig Tanh-Sinh formula 
 
Krzysztof Michalski and Juan Mosig “Efficient computation of Sommerfeld integral tails – 
methods and algorithms” describe a variant of the Tanh-Sinh rule for finite intervals: 
 

8 𝑓(𝑥)	𝑑𝑥 = 𝜎8 𝑓(𝜎𝑥 + 𝛾)	𝑑𝑥
"

!"

/

0
	≈ 𝜎ℎ D𝑔1(0)𝑓(𝛾) +	<𝑤$[𝑓(𝑎 + 𝜎𝛿$) + 𝑓(𝑏 − 𝜎𝛿$)]

2

$'"

L 

 
with abscissas 𝑎 + 𝜎𝛿$, 𝑏 − 𝜎𝛿$ 	 and weights 𝑤$ = 2𝑔1(𝑘ℎ)𝛿$/(1 + 𝑢3), where 𝑢$ = 𝑒!%4($6) 
and 𝛿$ = 1 − tanh(sinh(𝑘ℎ)) = 1 − (1 − 𝑢$)/(1 + 𝑢$) = 2𝑢$/(1 + 𝑢$). Choose 𝑔(𝑡) =
𝜂 sinh 𝑡 and 𝑔1(𝑡) = 𝜂 cosh 𝑡 for positive parameter 𝜂 to generate variations of the Tanh-Sinh 
rule. Note that we have 2𝑔(𝑘ℎ) = 𝜂(𝑒$6 − 𝑒!$6) and 2𝑔1(𝑘ℎ) = 𝜂(𝑒$6 + 𝑒!$6). Select 𝜂 = 1 
and ℎ = 1, "

%
, "
(
, … , "

%"
, then for 𝑗 = 1,… , 𝑛 define 𝑡3 = exp(𝑗ℎ), 𝑢3 = exp(−2 sinh(𝑗ℎ)) =

exp	(1/𝑡3 − 𝑡3), and 𝑟3 = 2𝑢3/(1 + 𝑢3), giving adjusted weights (scaled by 𝑔1(0) for the 
implementation) 𝑤3 = 2 cosh(𝑗ℎ) 𝑢3/(1 + 𝑢3)% = Y𝑡3 + 1/𝑡3Z𝑟3/(1 + 𝑢3) and abscissas 𝑎 + 𝑑𝑟3 
and 𝑏 − 𝑑𝑟3 with 𝑑 = "

%
(𝑏 − 𝑎).The computation of the abscissas and weights is effectively 

simplified by dropping the #!𝜋 factors from the Tanh-Sinh abscissas and weights. 
 
The visualize the different distributions of Tanh-Sinh points on the interval, the following graph 
shows the Tanh-Sinh general formula abscissas versus the Michalski & Mosig Tanh-Sinh 
formula abscissas. The abscissas (y-axis) on the interval (0,1) to compute ∫ (

")*!
𝑑𝑥"

+  are shown 
over time (x-axis), for error threshold 𝑒𝑝𝑠 = 10!. and 𝑘 = 0,…3, ℎ = 2!$: 
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The Tanh-Sinh variant described by Michalski & Mosig distributes slightly more abscissas 
between the endpoints of the integration interval as can be seen in the figure. 
 
The next section defines our initial version of a Michalski & Mosig Tanh-Sinh algorithm 
“qthsh” (cutiesh”) in C based on an existing open source implementation in VB (Appendix A). 
We aggressively optimize and improve this version in subsequent sections and compare it to the 
state-of-the-art Tanh-Sinh implementations in Python mpmath and Boost Math. 
 
 
A Tanh-Sinh implementation based on Michalski & Mosig 
 
Let’s start with an unoptimized implementation of qthsh based to the VB code published in the 
Excel spreadsheet accompanying the article “Numerical Integration with the Tanh-Sinh 
Quadrature V5.0” (Appendix A) using the Michalski & Mosig Tanh-Sinh rule: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double qthsh(double (*f)(double), double a, double b, int n, double eps) { 
  const double tol = 1E-7; // 1E-7 is "optimal" 
  double c = (a+b)/2; // center (mean) 
  double d = (b-a)/2; // half distance 
  double s = f(c); 
  double e, h; 
  int k = 0; 
  if (n > 7) 
    n = 6; // 6 is "optimal", 7 just as good taking longer 
  do { 
    double p = 0, q, fp = 0, fm = 0, v; 
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    int j = 1; 
    h = pow(2, -k); 
    do { 
      double t = exp(j*h); 
      double u = exp(1/t-t); // = exp(-2*sinh(j*h)) = 1/exp(sinh(j*h))^2 
      double r = 2*u/(1+u);  // = 1 - tanh(sinh(j*h)) 
      double x, w; 
      if (r == 0 || r == 1) 
        break; 
      x = d*r; 
      if (a+x > a) // if too close to a then reuse previous fp 
        fp = f(a+x); 
      if (b-x < b) // if too close to b then reuse previous fm 
        fm = f(b-x); 
      w = (t+1/t)*r/(1+u); // = cosh(j*h) / cosh(sinh(j*h))^2 
      q = w*(fp+fm); 
      p += q; 
      j += 1+(k>0); 
    } while (fabs(q) > fabs(p*eps)); 
    v = s; 
    s += p; 
    e = fabs(2*v/s-1); 
    ++k; 
  } while (e >= tol && k <= n); 
  return d*s*h; // result with estimated relative error e 
} 
 
 
Code optimizations to improve performance 
 
We apply loop strength reduction twice, without affecting the computation’s precision. The first 
strength reduction changes the code from the following: 
 
double h; 
int k = 0; 
... 
do { 
    double p = 0, q, fp = 0, fm = 0, v; 
    int j = 1; 
    h = pow(2, -k); // h=1,1/2,1/4,1/8,... 
    do { 
      double t = exp(j*h); 
      ... 
      j += 1+(k>0); 
    } while (fabs(q) > fabs(p*eps)); 
 
to the strength reduced version to eliminate pow(2,-k): 
 
double h = 2; 
int k = 0; 
... 
do { 
    double p = 0, q, fp = 0, fm = 0, v; 
    h /= 2; 
    do { 
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      double t = exp(j*h); 
      ... 
      j += 1+(k>0); 
    } while (fabs(q) > fabs(p*eps)); 
... 
} while (e >= tol && k <= n); 
... 
return d*s*h; // we need the final h here 
 
We apply a second loop strength reduction by observing that exp(j*h)=exp(h)^j then 
strength-reduce the power ^j away to obtain: 
 
double h = 2; 
int k = 0; 
... 
do { 
    double p = 0, q, fp = 0, fm = 0, v; 
    double t, eh; 
    h /= 2; 
    t = eh = exp(h);  
    if (k > 0) 
      eh *= eh 
    do { 
      ... 
      t *= eh; 
    } while (fabs(q) > fabs(p*eps)); 
... 
} while (e >= tol && k <= n); 
... 
return d*s*h; 
 
Another simplification is possible if the number of levels n is bounded to 7 max, by replacing 
exp(h) by a table lookup indexed by level counter k: 
 
static const double exptbl[7] = { ... }; // exp(1), exp(.5), ..., exp(2^-7) 
... 
t = eh = exptbl[k]; 
 
Alternatively, repeated square roots from exp(1) may be used to reduce computational 
overhead further. 
 
The following conditional loop exit can be removed because the condition is never true. This is 
also empirically verified with 818 integrals integrated with qthsh: 
 
      if (r == 0 || r == 1) 
        break; 
 
Improving the convergence tests 
 
There are two potential problems in the VB code and our initial C version: 
- division by zero may occur in the outer loop convergence test 
- underflow may occur in the inner loop convergence test 
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To fix division by zero, we remove the code that assigns the relative error to variable e and 
update the outer loop convergence test, by noting that 2*v-s’=s-p with new s’=s+p: 
 
    v = s-p; 
    s += p; 
    ++k; 
  } while (fabs(v) > tol*fabs(s) && k <= n); 
  e = fabs(v)/(fabs(s)+eps); 
  return d*s*h; // result with estimated relative error e 
 
With this first change, integrating 𝑓(𝑥) = 𝑥 − #

! over [0,1] produces the correct integral 0. We 
also add eps to the denominator to obtain a usable error estimate when fabs(s) is close to 
zero. Alternatively, we can set e=s and s=0 when fabs(s)<eps. 
 
Underflow can be corrected. However, this change increases the relative error for some functions 
that converge very slowly, so this cannot be recommended: 
 
} while (fabs(q) > eps*(fabs(p)+eps)); 
 
The non-final, faster Tanh-Sinh qthsh routine with changes highlighted: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double qthsh(double (*f)(double), double a, double b, int n, double eps) { 
  const double tol = 1E-7; // 1E-7 is "optimal" 
  double c = (a+b)/2; // center (mean) 
  double d = (b-a)/2; // half distance 
  double s = f(c); 
  double e, v, h = 2; 
  int k = 0; 
  if (n > 7) 
    n = 6; // 6 is "optimal", 7 just as good taking longer 
  do { 
    double p = 0, q, fp = 0, fm = 0, t, eh,; 
    h /= 2; 
    t = eh = exp(h); 
    if (k > 0) 
      eh *= eh; 
    do { 
      double u = exp(1/t-t);      // = exp(-2*sinh(j*h)) = 1/exp(sinh(j*h))^2 
      double r = 2*u/(1+u);       // = 1 - tanh(sinh(j*h)) 
      double w = (t+1/t)*r/(1+u); // = cosh(j*h)/cosh(sinh(j*h))^2 
      double x = d*r; 
      if (a+x > a)                // if too close to a then reuse previous fp 
        fp = f(a+x); 
      if (b-x < b)                // if too close to b then reuse previous fm 
        fm = f(b-x); 
      q = w*(fp+fm); 
      p += q; 
      t *= eh; 
    } while (fabs(q) > eps*fabs(p)); 
    v = s-p; 
    s += p; 
    ++k; 
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  } while (fabs(v) > tol*fabs(s) && k <= n); 
e = fabs(v)/(fabs(s)+eps); 
return d*s*h; // result with estimated relative error e 

}  
 
This article was initially inspired by a group discussion on the HP Forum (see References and 
Additional Resources) demonstrating the efficiency of Tanh-Sinh in calculators such as the 
excellent WP-34S, including vintage 80s SHARP Pocket Computers with BASIC. 
 
Our SHARP BASIC Tanh-Sinh routine “QTHSH” is just a few lines long. Like our C version, 
this BASIC version is optimized. However, computing EXP(J*H) in the inner loop is more 
accurate in SHARP BASIC than repeated multiplication in the loop by a variable, because 
variables hold 10 digits whereas computations are performed internally with 12-digit precision: 
 
100 "QTHSH" E=1E-9,N=6: INPUT "f=F";F$: F$="F"+F$ 
110 INPUT "a=";A 
120 INPUT "b=";B 
' init 
130 C=(A+B)/2,D=(B-A)/2,X=C: GOSUB F$: S=Y,H=1,K=0  
' outer loop 
140 J=1,P=0,L=0,M=0 
' inner loop 
150 T=EXP(J*H),U=EXP(1/T-T),R=2*U/(1+U) 
160 X=A+D*R: IF X>A GOSUB F$: L=Y 
170 X=B-D*R: IF X<B GOSUB F$: M=Y 
180 Q=(T+1/T)*R/(1+U)*(L+M),P=P+Q,J=J+1+(K>0) 
190 IF ABS Q>E*ABS P GOTO 150 
' exit inner loop 
200 X=S-P,S=S+P,K=K+1 
210 IF ABS X>1E-7*ABS S IF K<=N LET H=H/2: GOTO 140 
' exit outer loop, output result (and relative error estimate if >E) 
220 Y=D*S*H,U=ABS X/(ABS S+E) 
230 IF U>E LET E=U: PRINT Y,E: END 
240 E=U: PRINT Y: END  
 
For this up to 10-digit accurate BASIC version N=6 levels maximum appears optimal. 
 
However, these C and BASIC implementations are not final. Additional improvements and 
optimizations will be discussed and presented in additional sections in this article. First, let’s see 
how our initial non-final version of the qthsh routine compares to other Tanh-Sinh 
implementations. 
 
 
Implementations are not created equal  
 
This section compares our initial, non-final qthsh routine to other Tanh-Sinh implementations 
in the WP-34S calculator (coded in C with IEEE 754 double precision floating point, see 
Appendix B), Python mpmath and C++ Boost Math (double fp). The following table shows the 
performance of the four methods reported as pairs in the table (function evaluations, estimated 
relative error) to integrate the 21 functions ∫ 𝑓(𝑥)𝑑𝑥"

+  with 𝑒𝑝𝑠 = 10!. precision.  
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# f(x) qthsh (initial) WP-34S mpmath Boost Math 
1 x^3-2x^2+x (49,1e-13) (47,8e-12) (53,1e-16)* (74,1e-11) 
2 1/(1+x) (58,1e-13) (49,5e-12) (53,1e-22) (74,1e-11) 
3 4/(1+x*x) (30,3e-8)+ (49,1e-8)+ (107,1e-34) (147,1e-15) 
4 acos(x) (30,6e-8) (49,2e-13) (53,1e-25) (74,4e-13) 
5 sin(x)/x (30,1e-8) (49,7e-12) (53,1e-22) (74,1e-11) 
6 sqrt(x/(1-x^2)) (61,2e-8) (49,5e-8) (427,1e-10) (2216,2e-9) 
7 log(x)^2 (59,1e-13) (49,2e-12) (53,1e-14)# (74,8e-13) 
8 1/sqrt(x) (33,4e-8) (25,5e-7) (427,1e-10) (74,6e-15) 
9 1/sqrt(1-x) (32,4e-8) (25,5e-7) (427,1e-10) (2216,3e-9) 
10 x^-.8 (37,3e-8) (395,2e-4) (427,1e-4) (74,exact) 
11 (1-x)^-.8 (487,5e-6) (395,2e-4) (427,1e-4) (133724,1e-3)* 
12 1/sqrt(sin(pi*x)) (63,9e-9) (49,8e-8) (427,1e-8)* (586,1e-9) 
13 sin(pi*x)^-.8 (534,1e-5) (395,2e-4) (427,1e-4) (133724,2e-3)* 
14 1/sqrt(-log(x)) (32,2e-8) (25,4e-7) (427,1e-10) (2216,3e-9) 
15 1/sqrt(-log(1-x)) (-,-) see fix later (25,4e-7) (427,1e-10) (-,-) 
16 sin(pi*x*40) (315,2e-5)+ (335,1e-16) (27,5e-22) (19,2e-15) 
17 1/(1+25*x^2) (110,8e-12) (49,7e-10) (53,1e-10)# (147,2e-11) 
18 1/(1+0.04*x^2) (58,1e-15) (49,2e-12) (53,1e-23) (74,3e-12) 
19 sqrt(abs(x-.5)) (410,1e-3) (395,1e-3) (427,1e-3) (133724,5e-7) 
20 floor(10*x) (406,8e-3) (395,6e-3) (427,1e-2) (133724,1e-5) 
21 10*x-floor(10*x) (406,8e-3) (395,6e-3) (427,1e-2) (133724,1e-5) 

green results are within a 10× margin of the given error bound eps 
(-,-) fails with error 
* incorrect error estimate reported (too high or too low), actual error shown 
# underestimated error reported, actual error is (much) larger 
+ overestimated error reported, actual error is within 10-9 error bound 

Note: 
• WP-34S with 𝑒𝑝𝑠 = 10!", was used in this comparison, otherwise errors are too large, 

e.g. integral #2 has error 10-6 and integral #3 has error 10!(. 
• Python mpmath may return “misleading” error estimates, not sure why and when this 

happens. The error estimate is not integrated with Tanh-Sinh, but separately computed 
from the node sets. Python mpmath appears to ignore ±inf terms in the weighted sum. 

 
The differences between the four implementation is significant and mainly has to do with the 
way the endpoints are approached. This is best illustrated with point-distribution plots for two 
integrals #1 and #3. Plotting the y-axis (points) with a log scale reveals the proximity of the point 
distribution to the zero endpoint. In subsequent sections, we will use these “lessons learned” to 
make additional improvements to our initial qthsh routine to increase the accuracy of the 
method by adjusting the tolerance threshold and to handle endpoint singularities without 
prematurely terminating the convergence. The latter is a observed in the VB code (Appendix A), 
WP-34S (Appendix B) and mpmath, whereas Boost Math uses a Tanh-Sinh quadrature interval 
(0,1) instead of (-1,+1) and continues to iterate, even when one of the endpoints has a singularity. 
Boost Math performs suboptimal for integrals #11 and #15. Also, qthsh has an issue with #15, 
which is corrected by handling endpoint singularities differently as described later in this article.  
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Integral #1: 

8 𝑥8 − 2𝑥% + 𝑥
"

+
	𝑑𝑥 

 
qthsh (C code): eps=1e-9, n=6, points=47, est.rel.err=1e-13 
double f(double x) { ++ev; return x*x*x-2*x*x+x; } 
ev = 0; qthsh(f, 0, 1, 6, 1E-9); 
  
Points (y-axis) evaluated over time (x-axis) 
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mpmath: mp.dps=15, points=53, n=6, est.rel.err=1e-22 (actual is about 1e-16) 
from mpmath import * 
def bump(): 
  global evals 
  evals += 1 
  return 0 
f = lambda x: x*x*x-2*x*x+x +bump() 
evals=0; quad(f, [0,1], method='tanh-sinh', error=True) 
 
Points (y-axis) evaluated over time (x-axis) 
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Boost Math: eps=1e-9, points=74, est.rel.err=1e-11 
#include <boost/math/quadrature/tanh_sinh.hpp> 
using namespace boost::math::quadrature; 
static int ev = 0; 
int main() { 
  auto f = [](double x) { ++ev; return x*x*x-2*x*x+x; }; 
  double error; 
  double Q = tanh_sinh<double>().integrate(f, 0.0, 1.0, 1E-9, &error); 
  printf("Tanh-sinh %.15g est.rel.err=%g points=%d\n", Q, error, ev); 
} 
 
Points (y-axis) evaluated over time (x-axis) 

 

  

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40 50 60 70 80

Boost

-300

-250

-200

-150

-100

-50

0
0 10 20 30 40 50 60 70 80

Boost log



 16 

Integral #3: 

8
4

1 + 𝑥%
"

+
	𝑑𝑥 

 
 
qthsh (C code): eps=1e-9, n=6, points=30, est.rel.err=3e-8 (worse than eps) 
double f(double x) { ++ev; return 4/(1+x*x); } 
ev = 0; qthsh(f, 0, 1, 6, 1E-9); 
  
Points (y-axis) evaluated over time (x-axis) 
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mpmath: mp.dps=15, points=107, n=6, est.rel.err=1e-34 
from mpmath import * 
def bump(): 
  global evals 
  evals += 1 
  return 0 
f = lambda x: 4/(1+x*x) +bump() 
evals=0; quad(f, [0,1], method='tanh-sinh', error=True) 
 
Points (y-axis) evaluated over time (x-axis) 
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Boost Math: eps=1e-9, points=147, n=6, est.rel.err=1e-15 
#include <boost/math/quadrature/tanh_sinh.hpp> 
using namespace boost::math::quadrature; 
static int ev = 0; 
int main() { 
  auto f = [](double x) { ++ev; return 4/(1+x*x); }; 
  double error; 
  double Q = tanh_sinh<double>().integrate(f, 0.0, 1.0, 1E-9, &error); 
  printf("Tanh-sinh %.15g est.err=%g points=%d\n", Q, error, ev); 
} 
 
Points (y-axis) evaluated over time (x-axis) 
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Improved accuracy by adjusting the tolerance threshold 
 
With 𝑡𝑜𝑙 = 10!- suggested as “optimal” in the VB code (Appendix A), speed is favored over 
accuracy. A minimum number of points is evaluated, but this may produce relative error 
estimates that are slightly worse (3 ∙ 10!9) than a given error tolerance (𝑒𝑝𝑠 = 10!.): 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double qthsh(double (*f)(double), double a, double b, int n, double eps) { 
  const double tol = 1E-7; // 1E-7 is "optimal" 
 
Adjusting 𝑡𝑜𝑙 = 𝑒𝑝𝑠 with 𝑒𝑝𝑠 = 10!. the following integrands require more points to evaluate 
for the accuracy of the result to reach at least 10!. as expected for integrands that should pose no 
problems for Tanh-Sinh’s fast double exponential convergence: 
 

# f(x) qthsh tol=1e-7 qthsh tol=eps=1e-9 
3 4/(1+x*x) (30,3e-8) (58,3e-14) 
4 acos(x) (30,6e-8) (58,exact) 
5 sin(x)/x (30,1e-8) (58,9e-16) 
6 sqrt(x/(1-x^2)) (61,2e-8) (472,6e-10) 
8 1/sqrt(x) (33,4e-8) (63,1e-13) 
9 1/sqrt(1-x) (32,4e-8) (472,5e-10) 
10 x^-.8 (37,3e-8) (71,1e-14) 
12 1/sqrt(sin(pi*x)) (63,9e-9) (477,5e-10) 
14 1/sqrt(-log(x)) (32,2e-8) (472,6e-10) 

 
The fast convergence of Tanh-Sinh almost always overshoots the target tolerance unless the 
integrand is known to be problematic for Tanh-Sinh. We can use 𝑡𝑜𝑙 = 10 × 𝑒𝑝𝑠 (i.e. 
𝑡𝑜𝑙 = 10!9) with a factor 10× (tunable to 100×) for the relative error estimate: 
 

# f(x) qthsh tol=1e-7 qthsh tol=10eps=1e-8 
3 4/(1+x*x) (30,3e-8) (58,3e-14) 
4 acos(x) (30,6e-8) (58,7e-15) 
5 sin(x)/x (30,1e-8) (58,9e-16) 
6 sqrt(x/(1-x^2)) (61,2e-8) (120,7e-9) 
8 1/sqrt(x) (33,4e-8) (63,1e-13) 
9 1/sqrt(1-x) (32,4e-8) (120,6e-9) 
10 x^-.8 (37,3e-8) (71,1e-14) 
12 1/sqrt(sin(pi*x)) (63,9e-9) (63,9e-9) 
14 1/sqrt(-log(x)) (32,2e-8) (120,7e-9) 

 
Given these results, using a qthsh tolerance 𝑡𝑜𝑙 = 10 × 𝑒𝑝𝑠 appears quite reasonable: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double qthsh(double (*f)(double), double a, double b, int n, double eps) { 
  const double tol = 10*eps; 
 
210 IF ABS X>10*E*ABS S IF K<=N LET H=H/2: GOTO 140 
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Comparing the estimated relative error e = fabs(v)/(fabs(s)+eps) to the actual relative 
error |;<=>?@!<*0A@||<*0A@|)<B=

 using +eps in the denominator to prevent the relative error from blowing up 
when the result is (close to) zero and comparing the estimated absolute error fabs(d*v*h) to 
the actual absolute error shows a fairly good match: 
 

# f(x) e actual rel.err. fabs(d*v*h) actual abs.err. 
1 x^3-2x^2+x 1e-13 1e-14 1e-14 1e-15 
2 1/(1+x) 1e-13 2e-16 8e-14 1e-16 
3 4/(1+x*x) 3e-14 4e-16 9e-14 1e-15 
4 acos(x) 7e-15 2e-16 7e-15 2e-16 
5 sin(x)/x 9e-16 2e-16 9e-16 2e-16 
6 sqrt(x/(1-x^2)) 7e-9 2e-8 8e-9 2e-8 
7 log(x)^2 1e-13 2e-13 2e-13 3e-13 
8 1/sqrt(x) 1e-13 1e-13 3e-13 3e-13 
9 1/sqrt(1-x) 6e-9 1e-8 1e-8 3e-8 
10 x^-.8 1e-14 1e-14 5e-14 5e-14 
11 (1-x)^-.8 5e-6 5e-4 3e-5 3e-3 
12 1/sqrt(sin(pi*x)) 9e-9 1e-8 1e-8 2e-8 
13 sin(pi*x)^-.8 1e-5 3e-4 5e-5 1e-3 
14 1/sqrt(-log(x)) 7e-9 2e-8 1e-8 3e-8 
15 1/sqrt(-log(1-x)) 7e-9 2e-8 1e-8 3e-8 
16 sin(pi*x*40) 2e-4 1e-7 2e-16 2e-16 
17 1/(1+25*x^2) 8e-12 8e-12 2e-12 2e-12 
18 1/(1+0.04*x^2) 1e-15 3e-16 1e-15 3e-16 
19 sqrt(abs(x-.5)) 1e-3 6e-4 5e-4 3e-4 
20 floor(10*x) 9e-4 9e-4 4e-3 4e-3 
21 10*x-floor(10*x) 8e-3 8e-3 4e-3 4e-3 

 
Note that the value of e lies within one order of magnitude (10× or one significant digit) from 
the actual relative error: 𝑒 ≤ 10𝑒𝑝𝑠	if the actual relative error ≤ 𝑒𝑝𝑠 (the method converged) and 
𝑒 ≥ 𝑒𝑝𝑠/10 if the actual relative error ≥ 𝑒𝑝𝑠 (the method failed to converge). 
 
Verification of the final version of qthsh with 818 integrals of which 814 are integrable (non-
NaN) returned 690 results (85%) where e lies within one order of magnitude from the actual 
relative error, returned 720 results (88%) where e lies within two orders of magnitude from the 
actual relative error, and returned 760 results (93%) where e lies within three orders of 
magnitude from the actual relative error. For a wide range of eps values 1e-5 to 1e-10, the 
method generally converges with an actual relative error ≤ 𝑒𝑝𝑠. Furthermore, the estimated 
relative error e is accurate within 10× in most cases of the 818 integrals tested: 
 

eps= 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10 
average number of evaluations 57 69.4 81.7 93.4 106 132 
actual relative error ≤ 𝑒𝑝𝑠 771 766 755 707 559 182 
estimated rel.err. is within 10× 809 807 799 780 690 385 
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The table shows the number of cases when the actual relative error ≤ 𝑒𝑝𝑠 on the second row and 
the number of cases when the estimated relative error is within 10× of the actual relative error on 
the third row, that is, 𝑒 ≤ 10𝑒𝑝𝑠	if the actual relative error ≤ 𝑒𝑝𝑠 (the method converged) and 
𝑒 ≥ 𝑒𝑝𝑠/10 if the actual relative error ≥ 𝑒𝑝𝑠 (the method failed to converge). 
 
Comparing these qthsh results to the VB code (Appendix A) results and WP-34S code 
(Appendix B, but with a relative error estimate) results for eps=1e-9: 
 

 qthsh VB WP-34S 
average number of evaluations 106 97.8 62 
actual relative error ≤ 𝑒𝑝𝑠 559 549 233 
estimated rel.err. is within 10× 690 634 593 

 
It should be noted that the VB code succeeds for 796 integrands instead of 814 for the others. 
This is due to NaN issues that aren’t caught in the VB code. Overall, qthsh is more accurate, 
but with a slightly higher average number of function evaluations since the VB code uses 
tol=100*eps to terminate the loop earlier. To reduce the number of function evaluations in 
qthsh to 93.9 we can increase the tolerance, much like the VB code uses a higher tolerance 
tol=100*eps. However, we can use a more optimal tol=160*eps. We also adjust the 
estimated relative error e accordingly: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double qthsh(double (*f)(double), double a, double b, int n, double eps) { 
const double tol = 160*eps; 
[...] 
e = fabs(v)/(16*fabs(s)+eps); 

 
where the 160*eps and the 16* factor in e were empirically determined to optimize the 
accuracy of the estimated relative error e: 
 

eps= 1e-5 1e-6 1e-7 1e-8 1e-9 1e-10 
average number of evaluations 47.5 59.2 68.9 82 93.9 106 
actual relative error ≤ 𝑒𝑝𝑠 754 767 753 715 559 183 
estimated rel.err. is within 10× 805 803 796 777 682 352 

 
Note that the actual and estimated relative errors are only slightly worse while significantly 
accelerating the method by reducing the number of function evaluations by 10% or more. By 
comparison, the 93.9 average number of evaluations of qthsh for eps=1e-9 is lower than the 
VB code. Also qthsh has a higher number of accurate results within the actual and estimated 
relative errors. 
 
These results suggests that e can be a reliable estimate of the relative error for eps up to 1e-9 and 
the tolerance can be increased to accelerate the method by reducing the number of function 
evaluations at a very modest penalty in the (estimated) accuracy of the result. However, this 
accelerated convergence with 160*eps assumes the machine used IEEE 754 double precision. 
The acceleration may not be applicable to machines that do not use IEEE 754 double floating 
point, for example BCD machines such as calculators.  
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Dealing with singularities more effectively and accurately 
 
When the endpoints are “hit” by the abscissas on an open interval, it is advantageous to reuse the 
previous endpoint as if computed “in the limit”, e.g. lim

*→+

DEF *
*
= 1. From 818 integrals tested, this 

approach improved the result of 58 integrals versus 5 that were only slightly worse due to noise. 
 
When a function returns ±inf or NaN, there are two options: 
- terminate the convergence loop because subsequent points will likely produce ±inf or NaN 
- ignore ±inf and NaN, where “ignore” means to either replace its value with an interpolated 
value or assume it is zero. In this case we evaluate more function points to continue iterating. 
 
The second option appears to be more accurate, because the values towards the other endpoint 
that has no singularity are still accumulated in the quadrature sum and not interrupted. Reusing 
previous points affects only 12 integrals of 818 tested, where in 4 cases the integration error was 
10 times smaller when points are reused. As a tradeoff for this gain, more function evaluations 
may be required. The corresponding change to qthsh to handle singularities is as follows: 
 
      if (a+x > a) {       // if too close to a then reuse previous fp 
        double y = f(a+x); 
        if (isfinite(y)) 
          fp = y;          // if f(x) is finite, add to the local sum 
      } 
      if (b-x < b) {       // if too close to b then reuse previous fm 
        double y = f(b-x); 
        if (isfinite(y)) 
          fm = y;          // if f(x) is finite, add to the local sum 
      } 
 
With this subtle change, function 15 is efficiently integrated: 
 

# f(x) qthsh final 
15 1/sqrt(-log(1-x)) (120,7e-9) 

 
The estimated integral #15 is now the same as integral #14 as should be expected, up to the last 
digit 1.77245382409889. Both are the same for the same specified eps. 
 
SHARP BASIC implementations can use ON-ERROR-GOTO to implement a similar scheme, 
e.g. to reuse fp (stored in L) or fm (stored in M) when an overflow or division by zero occurred: 
 
100 ON ERROR GOTO 290 
210 X=A+D*R,Y=L: IF X>A GOSUB F$: L=Y 
220 X=B-D*R,Y=M: IF X<B GOSUB F$: M=Y 
290 IF <calculation error> RETURN 
 
Important: singularities anywhere on the integration domain are effectively interpolated, not 
only singularities at or close to the endpoints of the domain. As always, due diligence should be 
applied when integrating functions with singularities on the domain, by splitting the domain up 
into parts to avoid singularities and non-differentiable points in the domain. 
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The updated table with the final qthsh improvements shows the performance of the four methods 
reported as pairs in the table (function evaluations, estimated relative error) to integrate the 21 
functions ∫ 𝑓(𝑥)𝑑𝑥"

+  with a given error bound 𝑒𝑝𝑠 = 10!.: 
 
# f(x) qthsh final WP-34S mpmath Boost Math 
1 x^3-2x^2+x (49,1e-13) (47,8e-12) (53,1e-16)* (74,1e-11) 
2 1/(1+x) (58,1e-13) (49,5e-12) (53,1e-22) (74,1e-11) 
3 4/(1+x*x) (58,3e-14) (49,1e-8)+ (107,1e-34) (147,1e-15) 
4 acos(x) (58,1e-15) (49,2e-13) (53,1e-25) (74,4e-13) 
5 sin(x)/x (58,9e-16) (49,7e-12) (53,1e-22) (74,1e-11) 
6 sqrt(x/(1-x^2)) (120,7e-9) (49,5e-8) (427,1e-10) (2216,2e-9) 
7 log(x)^2 (59,1e-13) (49,2e-12) (53,1e-14)# (74,8e-13) 
8 1/sqrt(x) (63,1e-13) (25,5e-7) (427,1e-10) (74,6e-15) 
9 1/sqrt(1-x) (120,6e-9) (25,5e-7) (427,1e-10) (2216,3e-9) 
10 x^-.8 (71,1e-14) (395,2e-4) (427,1e-4) (74,exact) 
11 (1-x)^-.8 (487,5e-6) (395,2e-4) (427,1e-4) (133724,1e-3)* 
12 1/sqrt(sin(pi*x)) (63,9e-9) (49,8e-8) (427,1e-8)* (586,1e-9) 
13 sin(pi*x)^-.8 (534,1e-5) (395,2e-4) (427,1e-4) (133724,2e-3)* 
14 1/sqrt(-log(x)) (120,7e-9) (25,4e-7) (427,1e-10) (2216,3e-9) 
15 1/sqrt(-log(1-x)) (120,7e-9) (25,4e-7) (427,1e-10) (-,-) 
16 sin(pi*x*40) (315,2e-5)+ (335,1e-16) (27,5e-22) (19,2e-15) 
17 1/(1+25*x^2) (110,8e-12) (49,7e-10) (53,1e-10)# (147,2e-11) 
18 1/(1+0.04*x^2) (58,1e-15) (49,2e-12) (53,1e-23) (74,3e-12) 
19 sqrt(abs(x-.5)) (410,1e-3) (395,1e-3) (427,1e-3) (133724,5e-7) 
20 floor(10*x) (406,8e-3) (395,6e-3) (427,1e-2) (133724,1e-5) 
21 10*x-floor(10*x) (406,8e-3) (395,6e-3) (427,1e-2) (133724,1e-5) 

green results are within a 10× margin of the given error bound eps 
(-,-) fails with error 
* incorrect error estimate reported (too high or too low), actual error shown 
# underestimated error reported, actual error is (much) larger 
+ overestimated error reported, actual error is within 10-9 error bound 

 
In addition to these 21 test cases, qthsh was empirically verified with 818 integrals. Overall, the 
final version of qthsh performs competitively if not better compared to WP-34S, mpmath and 
Boost Math. The aim is to produce a result within the 10-9 error bound while performing a low 
number of function evaluations (not necessarily the lowest number of evaluations, but 
comparatively low.) The WP-34S method appears to “underdeliver” with a higher error in the 
result than the desired 𝑒𝑝𝑠 = 10!. for integrals #8, #9, #10, #11, #14 and #15. These integrals 
are harder, but not too hard to integrate. Python mpmath appears to do the opposite, sometimes 
“overdelivering” with a low error in the result with more function evaluations, such as the easy 
integrands in #1, #2 and #3. However, mpmath fails to integrate #10, #11, #12 and #13. Boost 
Math performs well in general but requires the highest number of function evaluations compared 
to the other three methods and fails to integrate #11, #13 and #15.  
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The final improved qthsh routine based on the Michalski & Mosig Tanh-Sinh rule: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double qthsh(double (*f)(double), double a, double b, int n, double eps) { 
const double tol = 10*eps; 

  double c = (a+b)/2; // center (mean) 
  double d = (b-a)/2; // half distance 
  double s = f(c); 
  double e, v, h = 2; 
  int k = 0; 
  if (n <= 0) // use default levels n=6 
    n = 6; // 6 is “optimal”, 7 just as good taking longer 
if (eps <= 0) // use default eps=1E-9 
  eps = 1E-9; 

  do { 
    double p = 0, q, fp = 0, fm = 0, t, eh; 
    h /= 2; 
    t = eh = exp(h); 
    if (k > 0) 
      eh *= eh; 
    do { 
      double u = exp(1/t-t);      // = exp(-2*sinh(j*h)) = 1/exp(sinh(j*h))^2 
      double r = 2*u/(1+u);       // = 1 - tanh(sinh(j*h)) 
      double w = (t+1/t)*r/(1+u); // = cosh(j*h)/cosh(sinh(j*h))^2 
      double x = d*r; 
      if (a+x > a) {              // if too close to a then reuse previous fp 
        double y = f(a+x); 
        if (isfinite(y)) 
          fp = y;                 // if f(x) is finite, add to the local sum 
      } 
      if (b-x < b) {              // if too close to b then reuse previous fm 
        double y = f(b-x); 
        if (isfinite(y)) 
          fm = y;                 // if f(x) is finite, add to the local sum 
      } 
      q = w*(fp+fm); 
      p += q; 
      t *= eh; 
    } while (fabs(q) > eps*fabs(p)); 
    v = s-p; 
    s += p; 
    ++k; 
  } while (fabs(v) > tol*fabs(s) && k <= n); 
e = fabs(v)/(fabs(s)+eps); 
return d*s*h; // result with estimated relative error e 

}  
 
The final improved SHARP BASIC version of the routine: 
 
' VARIABLES 
'  A,B     range 
'  F$      function label to integrate 
'  Y       result with error E 
'  E       estimated error 
'  N       levels (up to 6 or 7) 
'  C       (a+b)/2 center 
'  D       (b-a)/2 half distance 
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'  H       step size h=2^-k 
'  K       level counter 
'  P,Q,S   quadrature sums 
'  T       exp(j*h) 
'  L       fp=f(a+x) 
'  M       fm=f(b-x) 
'  O       exp(h) 
'  J,R,U,X scratch 
100 "QTHSH" ON ERROR GOTO 290: E=1E-9,N=6: INPUT "f=F";F$:  
F$="F"+F$ 
110 INPUT "a=";A 
120 INPUT "b=";B 
' init 
130 C=(A+B)/2,D=(B-A)/2,X=C: GOSUB F$: S=Y,H=1,K=0  
' outer loop 
140 J=1,P=0,L=0,M=0 
' inner loop 
150 T=EXP(J*H),U=EXP(1/T-T),R=2*U/(1+U) 
160 X=A+D*R,Y=L: IF X>A GOSUB F$: L=Y 
170 X=B-D*R,Y=M: IF X<B GOSUB F$: M=Y 
180 Q=(T+1/T)*R/(1+U)*(L+M),P=P+Q,J=J+1+(K>0) 
190 IF ABS Q>E*ABS P GOTO 150 
' exit inner loop 
200 X=S-P,S=S+P,K=K+1 
210 IF ABS X>10*E*ABS S IF K<=N LET H=H/2: GOTO 140 
' exit outer loop, output result (and relative error estimate if >E) 
220 Y=D*S*H,U=ABS X/(ABS S+E) 
230 IF U>E LET E=U: PRINT Y,E: END 
240 E=U: PRINT Y: END 
' The PC-1475 supports ON-ERROR-GOTO and ERN: 
290 IF ERN=2 RETURN  
 
Note: ON-ERROR-GOTO is not universally supported and can be omitted from the code. 
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Combining Tanh-Sinh with Exp-Sinh and Sinh-Sinh quadratures 
 
The Tanh-Sinh rule is applicable to open finite intervals.  The Exp-Sinh rule is applicable to an 
interval with one finite and one infinite bound: 
 

8 𝑓(𝑥)	𝑑𝑥
&

0
≈ ℎ D𝑔1(0)𝑓(𝑎 + 1) +	<𝑤$𝑓(𝑎 + 𝛿$) + 𝑓(𝑎 +

1
𝛿$
)/𝑤$

2

$'"

L 

 
with abscissas 𝑎 + 𝛿$, 𝑎 + 1/𝛿$ 	 and: 
 

8 𝑓(𝑥)	𝑑𝑥
/

&
≈ −ℎ D𝑔1(0)𝑓(𝑏 − 1) +	<𝑤$𝑓(𝑏 − 𝛿$) + 𝑓(𝑏 −

1
𝛿$
)/𝑤$

2

$'"

L 

 
with abscissas 𝑏 − 𝛿$, 𝑏 − 1/𝛿$ 	 and weights 𝑤$ = 𝛿$ = 	exp	(sinh(𝑘ℎ)). For 𝑗 = 1,… , 𝑛 
define 𝑡3 = exp(𝑗ℎ), 𝑤3 = 𝑟3 = exp(sinh(𝑗ℎ)) = exp	(𝑡3 − 1/𝑡3). Note that the G

%
 factor is 

dropped similar to the Michalski & Mosig Tanh-Sinh rule. 
 
To directly combine the Exp-Sinh rule with the Tanh-Sinh rule into one routine, we reformulate 
the Michalski & Mosig Tanh-Sinh rule’s abscissas as 𝛾 + 𝜎𝛿$ and 𝛾 − 𝜎𝛿$ with 
𝛿$ = tanh(𝑠𝑖𝑛ℎ(𝑘ℎ)) and weights 𝑤$ =	 cosh	(sinh	(𝑘ℎ))!%: 
 

8 𝑓(𝑥)	𝑑𝑥
/

0
= 𝜎8 𝑓(𝜎𝑥 + 𝛾)	𝑑𝑥

"

!"
≈ 𝜎ℎ D𝑔1(0)𝑓(𝛾) +	<𝑤$[𝑓(𝛾 + 𝜎𝛿$) + 𝑓(𝛾 − 𝜎𝛿$)]

2

$'"

L 

 
The abscissas in this combined implementation are defined by 𝑐 + 𝑑𝑟3 and 𝑐 − 𝑑𝑟3 with 𝑐 = (𝑎 +
𝑏)/2, 𝑑 = (𝑏 − 𝑎)/2 and	𝑟3 = tanh(𝑠𝑖𝑛ℎ(𝑗ℎ)) = (𝑢3 − 1/𝑢3)/(𝑢3 + 1/𝑢3) and weights 𝑤3 =
	cosh	(sinh	(𝑗ℎ))!% = 4/(𝑢3 + 1/𝑢3)% where 𝑢3 = exp	(𝑡3 − 1/𝑡3). This allows 𝑐 and	𝑑 to be 
defined specific to Tanh-Sinh as defined above and defined for Exp-Sinh with 𝑐 = 𝑎 or 𝑐 = 𝑏 
and 𝑑 = 1 and for Sinh-Sinh with 𝑐 = 0 and 𝑑 = 1. 
 
The Sinh-Sinh rule is applicable to unbounded intervals: 
 

8 𝑓(𝑥)	𝑑𝑥
&

&
≈ ℎ D𝑔1(0)𝑓(0) +	<𝑤$[𝑓(𝛿$) + 𝑓(−𝛿$)]

2

$'"

L 

 
With abscissas ±𝛿$ and weights 𝑤$ = cosh(sinh(𝑘ℎ)). For 𝑗 = 1,… , 𝑛 define 𝑡3 = exp(𝑗ℎ), 
𝑤3 = cosh(sinh(𝑗ℎ)) = exp	(𝑡3 + 1/𝑡3)/2, 𝑟3 = sinh(sinh(𝑗ℎ)) = exp	(𝑡3 − 1/𝑡3)/2. 
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The combined quadrature routine with one inner loop to compute the Tanh-Sinh, Exp-Sinh and 
Sinh-Sinh quadrature: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double quad(double (*f)(double), double a, double b, int n, double eps) { 
const double tol = 10*eps; 

  double c = 0, d = 1, s, sign = 1, e, v, h = 2; 
  int k = 0, mode = 0; // Tanh-Sinh = 0, Exp-Sinh = 1, Sinh-Sinh = 2 
  if (b < a) { // swap bounds 
    v = b; 
    b = a; 
    a = v; 
    sign = -1; 
  } 
  if (isfinite(a) && isfinite(b)) { 
    c = (a+b)/2; 
    d = (b-a)/2; 
    v = c; 
  } 
  else if (isfinite(a)) { 
    mode = 1; // Exp-Sinh 
    c = a; 
    v = a+d; 
  } 
  else if (isfinite(b)) { 
    mode = 1; // Exp-Sinh 
    d = -d; 
    sign = -sign; 
    c = b; 
    v = b+d; 
  } 
  else { 
    mode = 2; // Sinh-Sinh 
    v = 0; 
} 
s = f(v); 

  do { 
    double p = 0, q, t, eh; 
    h /= 2; 
    eh = exp(h); 
    t = eh/2; 
    if (k > 0) 
      eh *= eh; 
    do { 
      double r, w, x, y; 
      q = 0; 
      r = w = exp(t-.25/t); // = exp(sinh(j*h)) 
      if (mode != 1) {      // if Tanh-Sinh or Sinh-Sinh 
        w += 1/w;           // = 2*cosh(sinh(j*h)) 
        r -= 1/r;           // = 2*sinh(sinh(j*h)) 
        if (mode == 0) {    // if Tanh-Sinh 
          r /= w;           // = tanh(sinh(j*h)) 
          w = 4/(w*w);      // = 1/cosh(sinh(j*h))^2 
        } 
        else {              // if Sinh-Sinh 
          r /= 2;           // = sinh(sinh(j*h)) 
          w /= 2;           // = cosh(sinh(j*h)) 
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        } 
        x = c - d*r;        // will not approach a=0 as close as qthsh 
        if (x > a) { 
          y = f(x); 
          if (isfinite(y))  // if f(x) is finite, add to local sum 
            q += y*w; 
        } 
      } 
      else {                // Exp-Sinh 
        x = c + d/r;        // will not approach a=0 as close as qthsh 
        if (x > a) { 
          y = f(x); 
          if (isfinite(y))  // if f(x) is finite, add to local sum 
            q += y/w; 
        } 
      } 
      x = c + d*r;          // will not approach b=0 as close as qthsh 
      if (x < b) { 
        y = f(x); 
        if (isfinite(y))    // if f(x) is finite, add to local sum 
          q += y*w; 
      } 
      q *= t+.25/t;         // q *= cosh(j*h) 
      p += q; 
      t *= eh; 
    } while (fabs(q) > eps*fabs(p)); 
    v = s-p; 
    s += p; 
    ++k; 
  } while (fabs(v) > tol*fabs(s) && k <= n); 
  e = fabs(v)/(fabs(s)+eps); 
  return sign*d*s*h; // result with estimated relative error e 
} 
 
Because the performance of the inner loop determines the overall performance of the routine, 
several optimizations were applied while keeping the code compact, most notably strength 
reductions, branch eliminations, and variable reuse to reduce CPU register pressure. 
 
The quad routine implements the Michalski & Mosig Tanh-Sinh rule with the same abscissas 
and weights as qthsh, but ignores singularities by assuming zero as the default, rather than 
interpolating them with the previous points. 
 
Another important difference between the qthsh and quad routines are the function evaluation 
guards in the routine to check for the endpoints: a+d*r>a in qthsh versus c-d*r in quad 
and b-d*r<b in qthsh versus c+d*r<b in quad. If the finite endpoints a or b are zero or 
close to zero, then the corresponding endpoint may be more closely approached by qthsh with 
additional abscissas, while quad does not. This means that in some cases qthsh may produce 
more accurate results compared to quad when the integrand has a significant area to a zero 
endpoint, such as the integral ∫ 1/√𝑥

"
+ 	𝑑𝑥: 

 
# f(x) qthsh improved quad 
8 1/sqrt(x) (63,1e-13) (115,6e-9) 
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In this case, qthsh converged quickly at level 𝑘 = 3 to produce a result with a low relative 
error 10!"8, whereas quad converged later at level 𝑘 = 4 to a result with a larger relative error 
close to the specified 𝑒𝑝𝑠 = 10!.. 
 
To illustrate this important difference, the following chart shows the point distributions of 
qthsh and quad for this integrand, using a log scale to emphasize the points approaching the 
zero endpoint 𝑎 = 0 showing the Tanh-Sinh qthsh abscissas versus the quad abscissas for 
∫ "

√*
𝑑𝑥"

+  with 𝑒𝑝𝑠 = 10!.: 
 

 
 
The quad points are all 𝑥 > 10!"# due to IEEE 754 double precision with a loss of significant 
digits in the guard c-d*r>a with a=0 and c=0.5. By contrast, the qthsh points approach the 
zero endpoint 𝑎 = 0 until convergence is reached, while testing the guard a+x>a to prevent 
hitting the endpoint (this condition is not the same as the condition x>0 when a is nonzero, 
some programming languages may require parenthesis (a+x)>a to prevent “optimization” of 
the condition to the incorrect x>0). 
 
The WP-34S Tanh-Sinh implementation (Appendix B) and the Python mpmath Tanh-Sinh 
implementation do not approach a zero endpoint closely and may suffer slow convergence and/or 
a loss in accuracy. By contrast, the improved version of qthsh and Boost Math Tanh-Sinh 
implementations approach a zero endpoint closely and therefore require fewer function 
evaluations to integrate this function, producing a result with a low relative error for the given 
𝑒𝑝𝑠 = 10!.: 
 
# f(x) qthsh improved WP-34S in C mpmath Boost Math 
8 1/sqrt(x) (63,1e-13) (25,5e-7) (427,1e-10) (74,6e-15) 

 
Therefore, it seems reasonable to split Tanh-Sinh from Exp-Sinh and Sinh-Sinh into separate 
code blocks in the quad routine to achieve the same accuracy as qthsh. 
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Furthermore, we can prevent similar inaccuracies in Exp-Sinh by quitting the summation when 
x==c rather than checking if x>a: 
 
          x = c + d/r; 
          if (x == c) 
            break;             
 
This improved quad routine was tested with 1084 integrals. The tests were compared to a quad 
version with G

%
 factors (dropped in the Michalski & Mosig rule) and with ℎ = 1.5 as a starting 

value as suggested by Michalski & Mosig. Both parameters affect the point distributions. In 
these tests, the simpler quad routine more often produced accurate results with fewer points. 
 
 
A new method to improve Exp-Sinh quadrature convergence  
 
Exp-Sinh uses 𝑑 = 1 by default to split up the interval into a finite part and an infinite part 
∫ 𝑓(𝑥)𝑑𝑥&
0 = ∫ 𝑓(𝑥)𝑑𝑥0)I

0 + ∫ 𝑓(𝑥)𝑑𝑥&
0)I  and ∫ 𝑓(𝑥)𝑑𝑥/

!& = ∫ 𝑓(𝑥)𝑑𝑥/!I
!& + ∫ 𝑓(𝑥)𝑑𝑥/

/!I . 
This choice of splitting point of the intervals at 𝑎 + 𝑑 and 𝑏 − 𝑑, respectively, is somewhat 
arbitrary, but reasonable for most integrands, as we expect a large portion of the integration area 
to be located close to the finite endpoint. The finite and infinite interval parts are integrated with 
the same number of points. However, sometimes the infinite part can be much harder to integrate 
and consequently may require more points to converge. Furthermore, the weights 𝑤3 for the 
infinite part become very big as we increase the number of points that approach the ±inf 
endpoint. This causes roundoff errors. In this case more accurate results can be produced with 
fewer points by selecting a larger splitting point d depending on 𝑓(𝑥). If 𝑓(𝑥) has no substantial 
area close to the finite endpoint of the interval, then enlarging d can improve the Exp-Sinh 
convergence. Consider for example ∫ 𝑥!+.9𝑑𝑥"

+ = ∫ 𝑒!+.%K𝑑𝑦&
+ = 5 with the change of variable 

(see also the definite integral #10): 
 
 quad Exp-Sinh 

with 𝑑 = 1 
quad Exp-Sinh 
with 𝑑 = 2 

quad Exp-Sinh 
with 𝑑 = 10 

quad Exp-Sinh 
with 𝑑 = 45 

8 𝑒!+.%K𝑑𝑦
&

+
 

(249,2e-10) (131,9e-10) (69,2e-9) (71,exact) 

 
Furthermore, in other cases a fractional d may improve the Exp-Sinh convergence. For example, 
transforming ∫ 𝑥!+.9𝑑𝑥"

+ = ∫ <$%.!/(

K!
𝑑𝑦&

+ = 5 with a change of variable: 
 
 quad Exp-Sinh 

with 𝑑 = 1 
quad Exp-Sinh 
with 𝑑 = .5 

quad Exp-Sinh 
with 𝑑 = .1 

quad Exp-Sinh 
with 𝑑 = #

)* 

8
𝑒!+.%/K

𝑦% 𝑑𝑦
&

+
 

(249,2e-10) (131,9e-10) (69,2e-9) (71,exact) 
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Since it is desirable to control the Exp-Sinh splitting point, d should be an optional argument to 
the quad routine (not shown in the code listings). Likewise, for Sinh-Sinh a smarter splitting 
point instead of the default 𝑐 = 0 can be used to split the two parts of the integration 
∫ 𝑓(𝑥)𝑑𝑥&
!& = ∫ 𝑓(𝑥)𝑑𝑥A

!& + ∫ 𝑓(𝑥)𝑑𝑥&
A . This may improve the accuracy of the result when 

both halves are roughly as costly to integrate. A simple case is when 𝑓(𝑥) is symmetric at point 
𝑥 = 𝑐, i.e. 𝑓(𝑐 + 𝛿) ≈ 𝑓(𝑐 − 𝛿) or 𝑓(𝑐 + 𝛿) ≈ −𝑓(𝑐 − 𝛿). It is reasonable to assign the optional 
argument d (when specified) to c (not shown in the code listings) to improve Sinh-Sinh. 
 
The following new method introduced in this article can be used to optimize d. The method uses 
a geometric sequence to probe the symmetry of the 𝑓(𝑥) points around the specified d. This 
method adjusts d upward or downward to improve the accuracy of Exp-Sinh: 
 
// return optimized Exp-Sinh integral split point d 
double exp_sinh_opt_d(double (*f)(double), double a, double eps, double d) { 
  double h2 = f(a + d/2) - f(a + d*2)*4; 
  int i = 1, j = 32;     // j=32 is optimal to find r 
  if (isfinite(h2) && fabs(h2) > 1e-5) { // if |h2| > 2^-16 
    double r, fl, fr, h, s = 0, lfl, lfr, lr = 2; 
    do {                 // find max j such that fl and fr are finite 
      j /= 2; 
      r = 1 << (i + j); 
      fl = f(a + d/r); 
      fr = f(a + d*r)*r*r; 
      h = fl - fr; 
    } while (j > 1 && !isfinite(h)); 
    if (j > 1 && isfinite(h) && sign(h) != sign(h2)) { 
      lfl = fl;          // last fl=f(a+d/r) 
      lfr = fr;          // last fr=f(a+d*r)*r*r 
      do {               // bisect in 4 iterations 
        j /= 2; 
        r = 1 << (i + j); 
        fl = f(a + d/r); 
        fr = f(a + d*r)*r*r; 
        h = fl - fr; 
        if (isfinite(h)) { 
          s += fabs(h);  // sum |h| to remove noisy cases 
          if (sign(h) == sign(h2)) { 
            i += j;      // search right half 
          } 
          else {         // search left half 
            lfl = fl;    // record last fl=f(a+d/r) 
            lfr = fr;    // record last fl=f(a+d*r)*r*r 
            lr = r;      // record last r 
          } 
        } 
      } while (j > 1); 
      if (s > eps) {     // if sum of |h| > eps 
        h = lfl - lfr;   // use last fl and fr before the sign change 
        r = lr;          // use last r before the sign change 
        if (h != 0)      // if last diff != 0, back up r by one step 
          r /= 2; 
        if (fabs(lfl) < fabs(lfr)) 
          d /= r;        // move d closer to the finite endpoint 
        else 
          d *= r;        // move d closer to the infinite endpoint 
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      } 
    } 
  } 
return d; 

} 
 
The quad routine invokes the optimization method as follows: 
 
else if (isfinite(a)) { 
  mode = 1; // Exp-Sinh 
  d = exp_sinh_opt_d(f, a, eps, d); 
  c = a; 
  v = a + d; 

  } 
else if (isfinite(b)) { 

    mode = 1; // Exp-Sinh 
    d = exp_sinh_opt_d(f, b, eps, -d); 
    c = b; 
    v = b + d; 
    sign = -sign; 
  } 

The method finds the value 𝑟 = 2$, 𝑘 = 1,… , 𝑛 when ℎ = 𝑟 k
MN0)+,O

;
− 𝑟𝑓(𝑎 + 𝑟𝑑)l changes 

sign. If the sign of h changes from negative to positive, then d is multiplied by 2$!". If the sign 
of h changes from positive to negative, then d is divided by 2$!". If ℎ = 0 then d is multiplied or 
divided by 2$. Base 2 is used for efficiency. A different base value increases or decreases the r 
factor gaps to probe 𝑓(𝑥). Note that h is scaled by 𝑟 to make its value sequence comparable in 
scale. This is not required to detect the sign change. Consider for example ∫ 𝑒!+.%K𝑑𝑦&

+ . Exp-
Sinh has an optimal d around 45. The following table shows the change in sign of h, for 𝑑 = 1: 
 

𝑟 𝑓(𝑎 + 𝑑/2$) 2%$𝑓(𝑎 + 2$𝑑) h 
2 0.904837 2.68128 -1.77644 
4 0.951229 7.18926 -6.23803 
8 0.975310 12.9214 -11.9461 

16 0.987578 10.4351 -9.44755 
32 0.993769 1.70143 -0.707665 
64 0.996880 0.0113081 0.985572 

128 0.998439 1.24877e-07 0.998439 
256 0.999219 3.80717e-18 0.999219 
512 0.999609 8.84677e-40 0.999609 

1024 0.999805 1.19424e-83 0.999805 
 
With 𝑑 = 32 estimated by the method as closer to the optimal d, the Exp-Sinh quadrature returns 
the exact integral value 5 for 𝑒𝑝𝑠 = 10!. with 71 points evaluated.  
 
The method was tested with 208 integrals of which 28 were improved in accuracy with a 
reduction of 63 function evaluations on average to converge with 𝑒𝑝𝑠 = 10!.. The overhead of 
exp_sinh_opt_d is low. First the method evaluates 2 or 4 points to determine if a change of 
sign occurs in the difference h for 𝑟 ∈ [2, 2"#]. Bisection evaluates 8 points for a maximum of 12 
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points cost of this method. Of the 208 integrals, an average of 5.95 points were evaluated by 
exp_sinh_opt_d. See Appendix C for details. 
  
The final version of the improved quad routine with separate branches optimized for Tanh-Sinh, 
Exp-Sinh and Sinh-Sinh, where the Tanh-Sinh rule is the same as qthsh: 
 
// integrate function f, range a..b, max levels n, error tolerance eps 
double quad(double (*f)(double), double a, double b, int n, double eps) { 
const double tol = 10*eps; 

  double c = 0, d = 1, s, sign = 1, e, v, h = 2; 
  int k = 0, mode = 0; // Tanh-Sinh = 0, Exp-Sinh = 1, Sinh-Sinh = 2 
  if (b < a) { // swap bounds 
    v = b; 
    b = a; 
    a = v; 
    sign = -1; 
  } 
  if (isfinite(a) && isfinite(b)) { 
    c = (a+b)/2; 
    d = (b-a)/2; 
    v = c; 
  } 
  else if (isfinite(a)) { 
    mode = 1; // Exp-Sinh 
              // alternatively d = exp_sinh_opt_d(f, a, eps, d); 
    c = a; 
    v = a+d; 
  } 
  else if (isfinite(b)) { 
    mode = 1; // Exp-Sinh 
    d = -d;   // alternatively d = exp_sinh_opt_d(f, b, eps, -d); 
    sign = -sign; 
    c = b; 
    v = b+d; 
  } 
  else { 
    mode = 2; // Sinh-Sinh 
    v = 0; 
} 
s = f(v); 

  do { 
    double p = 0, q, fp = 0, fm = 0, t, eh; 
    h /= 2; 
    t = eh = exp(h); 
    if (k > 0) 
      eh *= eh; 
    if (mode == 0) {             // Tanh-Sinh 
      do { 
        double u = exp(1/t-t);   // = exp(-2*sinh(j*h)) = 1/exp(sinh(j*h))^2 
        double r = 2*u/(1+u);    // = 1 - tanh(sinh(j*h)) 
        double w = (t+1/t)*r/(1+u); // = cosh(j*h)/cosh(sinh(j*h))^2 
        double x = d*r; 
        if (a+x > a) {           // if too close to a then reuse previous fp 
          double y = f(a+x); 
          if (isfinite(y)) 
            fp = y; /            // if f(x) is finite, add to local sum 
        } 
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        if (b-x < b) {           // if too close to a then reuse previous fp 
          double y = f(b-x); 
          if (isfinite(y)) 
            fm = y;              // if f(x) is finite, add to local sum 
        } 
        q = w*(fp+fm); 
        p += q; 
        t *= eh; 
      } while (fabs(q) > eps*fabs(p)); 
    } 
    else { 
      t /= 2; 
      do { 
        double r = exp(t-.25/t); // = exp(sinh(j*h)) 
        double x, y, w = r; 
        q = 0; 
        if (mode == 1) {         // Exp-Sinh 
          x = c + d/r; 
          if (x == c)            // if x hit the finite endpoint then break 
            break; 
          y = f(x); 
          if (isfinite(y))       // if f(x) is finite, add to local sum 
            q += y/w; 
        } 
        else {                   // Sinh-Sinh 
          r = (r-1/r)/2;         // = sinh(sinh(j*h)) 
          w = (w+1/w)/2;         // = cosh(sinh(j*h)) 
          x = c - d*r; 
          y = f(x); 
          if (isfinite(y))       // if f(x) is finite, add to local sum 
            q += y*w; 
        } 
        x = c + d*r; 
        y = f(x); 
        if (isfinite(y))         // if f(x) is finite, add to local sum 
          q += y*w; 
        q *= t+.25/t;            // q *= cosh(j*h) 
        p += q; 
        t *= eh; 
      } while (fabs(q) > eps*fabs(p)); 
    } 
    v = s-p; 
    s += p; 
    ++k; 
  } while (fabs(v) > tol*fabs(s) && k <= n); 
  e = fabs(v)/(fabs(s)+eps); 
  return sign*d*s*h; // result with estimated relative error e 
} 
 
The final BASIC version of the combined quadrature routine with the Tanh-Sinh rule of qthsh: 
 
' VARIABLES 
'  A,B     range, -9E99 and 9E99 are -inf and +inf 
'  F$      function label to integrate 
'  Y       result with error E 
'  E       estimated relative error of the result 
'  N       levels (up to 6 or 7) 
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'  C       center 
'  D       half distance 
'  G       sign 
'  H       step size h=2^-k 
'  K       level counter 
'  P,Q,S   quadrature sums 
'  T       exp(j*h) 
'  L       f(x) point 
'  M       f(x) point 
'  J,R,U,X scratch 
100 "QUAD" ON ERROR GOTO 490: E=1E-9,N=6: INPUT "f=F";F$: F$="F"+F$ 
110 INPUT "a=";A 
120 INPUT "b=";B 
' init and swap bounds if b<a 
130 D=1,G=1,H=1,K=0: IF B<A LET X=A,A=B,B=X,G=-1 
140 IF ABS A<9E99 IF ABS B<9E99 GOTO 180 
150 IF ABS A<9E99 LET C=A,X=A+D: GOTO 300 
160 IF ABS B<9E99 LET C=B,X=B-D,D=-D,G=-G: GOTO 300 
170 GOTO 400 
' Tanh-Sinh 
180 C=(A+B)/2,D=(B-A)/2,X=C: GOSUB F$: S=Y 
' outer loop 
190 J=1,P=0,L=0,M=0 
' inner loop 
200 T=EXP(J*H),U=EXP(1/T-T),R=2*U/(1+U) 
210 X=A+D*R,Y=L: IF X>A GOSUB F$: L=Y 
220 X=B-D*R,Y=M: IF X<B GOSUB F$: M=Y 
230 Q=(T+1/T)*R/(1+U)*(L+M),P=P+Q,J=J+1+(K>0) 
240 IF ABS Q>E*ABS P GOTO 200 
' exit inner loop 
250 X=S-P,S=S+P,K=K+1 
260 IF ABS X>10*E*ABS S IF K<=N LET H=H/2: GOTO 190 
' exit, output result (and relative error estimate if >E) 
270 Y=G*D*S*H,U=ABS X/(ABS S+E) 
280 IF U>E LET E=U: PRINT Y,E: END 
290 E=U: PRINT Y: END 
' Exp-Sinh 
300 GOSUB F$: S=Y 
' outer loop 
310 J=1,P=0 
' inner loop 
320 T=EXP(J*H)/2,U=EXP(T-.25/T) 
330 X=C+D/U: IF X=C GOTO 370 
340 GOSUB F$: L=Y/U,X=C+D*U: GOSUB F$: M=Y*U 
350 Q=(T+.25/T)*(L+M),P=P+Q,J=J+1+(K>0) 
360 IF ABS Q>E*ABS P GOTO 320 
' exit inner loop 
370 X=S-P,S=S+P,K=K+1 
380 IF ABS X>10*E*ABS S IF K<=N LET H=H/2: GOTO 310 
390 GOTO 270 
' Sinh-Sinh 
400 X=0: GOSUB F$: S=Y 
' outer loop 
410 J=1,P=0 
' inner loop 
420 T=EXP(J*H)/2,U=EXP(T-.25/T)/2,R=U-.25/U 
430 X=-R: GOSUB F$: L=Y,X=R: GOSUB F$: M=Y 
440 Q=(T+.25/T)*(U+.25/U)*(L+M),P=P+Q,J=J+1+(K>0) 
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450 IF ABS Q>E*ABS P GOTO 420 
' exit inner loop 
460 X=S-P,S=S+P,K=K+1 
470 IF ABS X>10*E*ABS S IF K<=N LET H=H/2: GOTO 410 
480 GOTO 270 
' The PC-1475 supports ON-ERROR-GOTO and ERN: 
290 IF ERN=2 RETURN  
 
Note: ON-ERROR-GOTO is not universally supported and can be omitted from the code. 
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Conclusions 
 
To summarize the conclusions of this article:  
 
- The Michalski & Mosig Tanh-Sinh quadrature speed is further improved 
 
- The Tanh-Sinh quadrature convergence conditions are improved  
 
- The Tanh-Sinh quadrature tolerance is adjusted to prevent early termination to improve the 
accuracy of the result at a cost of function evaluations, a tradeoff that can be tuned as desired 
 
- The Tanh-Sinh quadrature accurately handles singularities (±inf and NaN) close to endpoints 
 
- The Tanh-Sinh quadrature is combined with Exp-Sinh and Sinh-Sinh in one routine 
 
- A new pre-conditioning method is proposed to improve the Exp-Sinh quadrature method 
 
My sincere thanks go to Albert Chan for his constructive comments and suggestions he shared 
with me and the other members on the HP-Forum. I also would like to thank the author of the 
WP-34S Tanh-Sinh quadrature implementation César Rodríguez for his comments he shared on 
the HP-Forum. 
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Additional resources 
 
HP-Forum thread: https://www.hpmuseum.org/forum/thread-16549.html 
 
The new quad routine in HP PPL: https://www.hpmuseum.org/forum/thread-16635-post-148080.html#pid148080 
 
Test scripts and results to compare methods: https://www.genivia.com/files/qthsh.zip  
 
Article with Visual Basic Tanh-Sinh implementation (see Appendix A): 
https://newtonexcelbach.com/2020/10/29/numerical-integration-with-tanh-sinh-quadrature-v-5-0/ 
 
WP-34S Tanh-Sinh implementation (see Appendix B): 
https://www.hpmuseum.org/forum/thread-8021-post-70927.html 
https://github.com/mcesar-rlacruz/py-double-exponential 
 
Boost Math Tanh-Sinh implementation: 
https://www.boost.org/doc/libs/1_75_0/libs/math/doc/html/math_toolkit/double_exponential/de_tanh_sinh.html 
 
Boost Math Tanh-Sinh C++ code: 
https://github.com/boostorg/math/blob/develop/include/boost/math/quadrature/tanh_sinh.hpp 
 
mpmath Python code: https://github.com/fredrik-johansson/mpmath/blob/master/mpmath/calculus/quadrature.py 
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Appendix A 
 
Tanh-Sinh V5.0 VB QUAD_TANH_SINH source code (GPL licensed) 
 
Option Explicit 
 
 
 
'    QUAD_TANH_SINH for finite intervals. 
'    This is the fastest and simplest high-performance T-S program I have found. 
' 
'    It is based on the HP RPN calculator source code listing provided at 
'    https://www.hpmuseum.org/forum/thread-8021.html. 
'    The code shrunk to two Do loops as shown below. 
' 
'    The full RPN source code for the WP 34S calculator integration 
'    program was written by M. César Rodríguez in 2017 for inclusion in 
'    the WP 34s calculator software for numerical integration. It 
'    covers the four intervals with four different programs: 
'         a. finite interval, (a,b) 
'         b. Right semi-infinite interval, (a,inf) 
'         c. Left semi-infinite interval, (-inf,b) 
'         d. Infinite interval, (-inf,inf) 
' 
'    The RPN source code selected is the first of the three versions 
'    presented on the web page, shown as v1.2r-393 (20170327), and stated 
'    as being suitable for keying in by hand. The RPN source code was 
'    distilled down to the specific finite interval code which acted 
'    as the basis of this present VBA program. 
' 
' The Tanh-Sinh Transform which transforms the function value is g(z) = f(x(z)) * dxdz(z) 
 
' where   x(z) = (b + a) / 2 + (b - a) / 2 * TANH(SINH(z)) 
' and     dxdz(z) = (b - a) / 2 * COSH(z) / COSH(SINH(z))^2 
 
' The purpose of the T-S transform is to transform a function over (-1,1) to a new function 
' on the entire real line (-inf,inf), where the two integrals have the same value. 
 
' It is the transformed function which is integrated by the T-S integrator 
' using Trapezoidal summation. 
' Because of the double exponential growth of the denominator in dxdz(z), the +-z sample 
' points used for the trapezoidal rule do not have to step very far before g(z) becomes zero 
' or sufficiently small for exit and termination. In other words, g(z) approaches zero 
' at a double exponential rate. That is the power of the technique used in the T-S method. 
 
' However, we don't calculate x(z) and dxdz(z) directly as above, as the term 
' 1/COSH(SINH(z))^2 can overflow for large z. 
' 
' To prevent this, we calculate x(z) and dxdz(z) this way, courtesy of the Michalski & Mosig T-S 
integrator. 
' The VBA code translated by the author from the Rodriguez RPN source was modified to use this 
technique. 
' It improved the accuracy and reduced the execution time. 
 
' 1. Enter value for z (z <= 709) 
 
' 2. exz = exp(z) 
 
' 3. q = exp(-2 * sinh(z)) 
'      = exp(-2 * (exz - 1/exz) / 2) 
'      = exp(-(exz - 1/exz)) 
'      = exp(1/exz - exz) 
 
' 4. delta = 2 * q / (1 + q) = (1 - tanh(sinh z)) 
 
' 5. x(z) = (b + a) / 2 + (b - a) / 2 * delta 
 
' 6. fxz = f(x(z)) 
 
' 7. dxdz = dxdz(z) =  (b - a) / 2 * (exz + 1/exz) * delta / (1 + q) 
 
' 8. The transformed function = y = fxz * dxdz 
 
' Now, for large positive z (6.5 < z < 709), q simply underflows harmlessly to zero. 
' Negative z is handled by using the symmetry of the trapezoidal rule about 
' the midpoint of the interval. 
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Function QUAD_TANH_SINH(func As String, Symbols As Variant, Values As Variant, _ 
                                  Parms As Variant, Optional evaltype As Long = 1) As Variant 
 
    Dim Result(1 To 4) As Variant, c As String 
    Dim Parmscount As Long, k As Long, a As Double, b As Double, i As Long 
    Dim errval As Double, maxlevel As Long, bpa2 As Double, bma2 As Double 
    Dim eps As Double, tol As Double, expu As Double, sshp As Double, h As Double 
    Dim n As Long, j As Long, t As Double, w As Double, r As Double, fp As Double 
    Dim fm As Double, p As Double, expt As Double, u As Double, delta As Double 
    Dim ssp As Double, ss As Double, sslast As Double, evals As Long, x As Double 
    Dim ScreenUpdateState As Boolean, StatusBarState As Boolean 
    Dim CalcState As Boolean, EventsState As Boolean, AlertsState As Boolean 
     
    ' Error management 
    On Error Resume Next 
 
    '   Disable unwanted events so the code runs faster. 
    '   Get the current status settings 
    ScreenUpdateState = Application.ScreenUpdating 
    StatusBarState = Application.DisplayStatusBar 
    CalcState = Application.Calculation 
    EventsState = Application.EnableEvents 
    AlertsState = Application.DisplayAlerts 
 
    '   Turn the settings off 
    Application.ScreenUpdating = False 
    Application.DisplayStatusBar = False 
    Application.Calculation = xlCalculationManual 
    Application.EnableEvents = False 
    Application.DisplayAlerts = False 
 
    ' Load the input parameters into arrays for access 
    ' Load the input parameters into arrays for access 
    GetArray Symbols                    ' Get the Symbols array. 
    GetArray Values                     ' Get the values array. 
    GetArray Parms                      ' Get the parameters array. 
 
    ' Do some parameter checks. 
    ' Prepare Result() array for possible error exit 
    Result(1) = "" 
    Result(2) = "" 
    Result(3) = "" 
    Result(4) = "" 
 
    ' Check the fourth input cell range for min. amd max. parameter count 
    Parmscount = UBound(Parms) - LBound(Parms) + 1 
 
    ' If not correct parameters count, exit with message 
    If Parmscount <> 3 Then             ' 3 parameters required 
        Result(1) = "** ERROR: 3 params. reqd **" 
        GoTo exithere 
    End If 
 
    If func = "" Then 
        Result(1) = "** ERROR: No integrand! **" 
        GoTo exithere 
    End If 
 
    If IsEmpty(Parms(1, 1)) Then 
        Result(1) = "** ERROR: No variable! **" 
        GoTo exithere 
    End If 
 
    If IsEmpty(Parms(2, 1)) Then 
        Result(1) = "** ERROR: No lower limit! **" 
        GoTo exithere 
    End If 
 
    If IsEmpty(Parms(3, 1)) Then 
        Result(1) = "** ERROR: No upper limit! **" 
        GoTo exithere 
    End If 
 
    ' Ensure the upper limit is greater than the lower limit 
    If Parms(3, 1) < Parms(2, 1) Then 
        Result(1) = "** ERROR: Check limit values ***" 
        GoTo exithere 
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    End If 
 
    ' Ensure the variable occurs at least once in the function! 
    If evaltype = 1 Then 
        If InStr(func, Parms(1, 1)) = False Then         ' if not found then exit with message 
            Result(1) = "Variable not in Function" 
            GoTo exithere 
        End If 
    End If 
 
    ' Replace the Symbols in the function with the specified Values 
    If evaltype = 1 Then 
        For i = 1 To UBound(Symbols, 1) - LBound(Symbols, 1) + 1 
            func = Replace(func, Symbols(i, 1), Values(i, 1)) 
        Next i 
    End If 
 
    ' Get the two limits of integration and the integrating variable: 
    a = Parms(2, 1)    ' lower limit 
    b = Parms(3, 1)    ' upper limit 
    c = Parms(1, 1)    ' intvar 
 
    ' Get timer count 
    Result(4) = MicroTimer      ' precision timer for results 
     
    ' Set some program constants. These are the optimum values. 
    ' epsilon 
    eps = 10 ^ -15                   ' eps = 10^-15 is OPTIMUM! 
    ' convergence tolerance 
    tol = 10 ^ -7                    ' tol = 10^-7 is OPTIMUM! 
    ' max level 
    maxlevel = 6                     ' maxlevel = 6 is OPTIMUM!  A slightly more accurate result with 
maxlevel = 7 but takes longer. 
     
    bma2 = (b - a) / 2   ' interval half-length 
    bpa2 = (b + a) / 2   ' centre of interval 
    k = 0                ' level counter 
    ss = EvalFunc(func, c, bpa2, evaltype, Values)   ' centre of interval 
    evals = 1 
 
    Do 
        ssp = 0 
        j = 1 
        h = 2 ^ -k 
                
        Do 
            t = h * j 
 
            If t > 6.56 Then Exit Do 
             
            expt = Exp(t) 
             
            u = Exp(1 / expt - expt)   ' = exp(-(expt - 1/expt)) = exp(-2 (expt -1/expt) /2) = exp(-2 
sinh t) 
             
            r = 2 * u / (1 + u)        '  r = 1 - tanh(sinh t) 
 
'           Added so as to check that r <> 0 and r <> 1 to ensure r hasn't rounded to 0 or 1 when 
tanh(sinh(t)) is very close to 0 or 1. 
            If r <> 0 And r <> 1 Then x = bma2 * r Else Exit Do 
 
'           Added to check that (a + x) > a to ensure (a + x) hasn't rounded to a when x is very small. 
'           This prevents calculation of the function at lower limit a. 
 
            If (a + x) > a Then 
                fp = EvalFunc(func, c, (a + x), evaltype, Values) 
                evals = evals + 1 
            End If 
 
'           Added to check that (b - x) < b to ensure (b - x) hasn't rounded to b when x is very small. 
'           This prevents calculation of the function at upper limit b. 
 
            If (b - x) < b Then 
                fm = EvalFunc(func, c, (b - x), evaltype, Values) 
                evals = evals + 1 
            End If 
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            w = (expt + 1 / expt) * r / (1 + u)   ' w = cosh t / cosh^2 (sinh t)     See separate 
proof. 
             
            p = (fp + fm) * w 
            ssp = ssp + p 
            If k > 0 Then j = j + 2 Else j = j + 1 
         
        Loop While Abs(p) > Abs(ssp * eps) 
     
        ss = ss + ssp 
        errval = Abs(2 * sslast / ss - 1) 
        sslast = ss 
        k = k + 1 
     
    Loop While errval >= tol And k <= maxlevel 
    Result(1) = ss * bma2 * h             ' load the integral result, 
    Result(2) = errval                    ' its error value, 
    Result(3) = evals                     ' func evals 
    Result(4) = MicroTimer - Result(4)    ' and the calculation time 
 
exithere: 
     
    QUAD_TANH_SINH = Result       ' Return the results as an array. 
 
    ' 3.  Reset the settings back to their original state 
    Application.ScreenUpdating = ScreenUpdateState 
    Application.DisplayStatusBar = StatusBarState 
    Application.Calculation = CalcState 
    Application.EnableEvents = EventsState 
    Application.DisplayAlerts = AlertsState 
 
End Function 
 
 

Tanh-Sinh Article’s V5.0 VB QUAD_DE1 source code (GPL) 
 
 
Option Explicit 
 
 
 
' This (a,inf) integration program was translated from the 
' RPN program in the WP34S calculator, written by M. Cesar Rodriguez in 2017. 
' 
 
 
 
Function QUAD_DE1(func As String, Symbols As Variant, Values As Variant, _ 
                      Parms As Variant, Optional evaltype As Long = 1) As Variant 
 
    Dim Result(1 To 4) As Variant, c As String 
    Dim Parmscount As Long, k As Long, i As Long, maxlevel As Long 
    Dim eps As Double, tol As Double, tm As Double, h As Double 
    Dim j As Long, t As Double, w As Double, r As Double, fp As Double 
    Dim fm As Double, ssp As Double, expt As Double, u As Double 
    Dim expu As Double, evals As Long, ss As Double, sslast As Double 
    Dim a As Double, p As Double, ct As Double, errval As Double 
    Dim ScreenUpdateState As Boolean, StatusBarState As Boolean 
    Dim CalcState As Boolean, EventsState As Boolean, AlertsState As Boolean 
     
    ' Error management 
    On Error Resume Next 
 
    '   Disable unwanted events so the code runs faster. 
    '   Get the current status settings 
    ScreenUpdateState = Application.ScreenUpdating 
    StatusBarState = Application.DisplayStatusBar 
    CalcState = Application.Calculation 
    EventsState = Application.EnableEvents 
    AlertsState = Application.DisplayAlerts 
 
    '   Turn the settings off 
    Application.ScreenUpdating = False 
    Application.DisplayStatusBar = False 
    Application.Calculation = xlCalculationManual 
    Application.EnableEvents = False 
    Application.DisplayAlerts = False 
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    ' Load the input parameters into arrays for access 
    ' Load the input parameters into arrays for access 
    GetArray Symbols                    ' Get the Symbols array. 
    GetArray Values                     ' Get the values array. 
    GetArray Parms                      ' Get the parameters array. 
 
    ' Do some parameter checks. 
    ' Prepare Result() array for possible error exit 
    Result(1) = "" 
    Result(2) = "" 
    Result(3) = "" 
    Result(4) = "" 
 
    ' Check the fourth input cell range for min. amd max. parameter count 
    Parmscount = UBound(Parms) - LBound(Parms) + 1 
 
    ' If not correct parameters count, exit with message 
    If Parmscount <> 2 Then             ' 1 parameter required 
        Result(1) = "** ERROR: 2 param. reqd **" 
        GoTo exithere 
    End If 
 
    If func = "" Then 
        Result(1) = "** ERROR: No integrand! **" 
        GoTo exithere 
    End If 
 
    If IsEmpty(Parms(1, 1)) Then 
        Result(1) = "** ERROR: No variable! **" 
        GoTo exithere 
    End If 
 
    ' Ensure the variable occurs at least once in the function! 
    If evaltype = 1 Then 
        If InStr(func, Parms(1, 1)) = False Then         ' if not found then exit with message 
            Result(1) = "Variable not in Function" 
            GoTo exithere 
        End If 
    End If 
 
    ' Replace the Symbols in the function with the specified Values 
    If evaltype = 1 Then 
        For i = 1 To UBound(Symbols, 1) - LBound(Symbols, 1) + 1 
            func = Replace(func, Symbols(i, 1), Values(i, 1)) 
        Next i 
    End If 
 
    ' Get the integrating parameters: 
    a = Parms(2, 1)    ' lower limit 
    c = Parms(1, 1)    ' intvar 
 
    ' Get timer count 
    Result(4) = MicroTimer      ' precision timer for results 
     
    ' Set some program constants. These are the optimum values. 
    ' epsilon 
    eps = 10 ^ -14                    ' eps = 10^-14 is OPTIMUM! 
    ' convergence tolerance 
    tol = 10 ^ -8                     ' tol = 10^-8 is OPTIMUM! 
    ' max level 
    maxlevel = 6                      ' maxlevel = 6 is OPTIMUM! 
     
    ss = EvalFunc(func, c, (a + 1), evaltype, Values) 
    evals = 1 
    k = 0 
     
    Do 
        ssp = 0 
        j = 1 
        h = 2 ^ -k 
        
        Do 
            t = h * j 
            If t > 6.56 Then Exit Do 
            expt = Exp(t) 
            ct = (expt + 1 / expt) / 2                 ' = cosh t 
            r = Exp(PIon2 * (expt - 1 / expt) / 2)     ' = node = exp(pi/2 sinh t) 
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            If r = 0 Then Exit Do 
            w = r                                      ' = weight 
            fp = EvalFunc(func, c, (a + r), evaltype, Values) * w 
            fm = EvalFunc(func, c, (a + 1 / r), evaltype, Values) / w 
            evals = evals + 2 
            p = (fp + fm) * ct 
            ssp = ssp + p 
            If k > 0 Then j = j + 2 Else j = j + 1 
            If Abs(ssp * eps) >= Abs(p) Then Exit Do 
         
        Loop 
         
        ss = ss + ssp 
        errval = Abs(2 * sslast / ss - 1) 
        If errval < tol Then Exit Do 
        sslast = ss 
        k = k + 1 
     
    Loop While k <= maxlevel 
 
    Result(1) = ss * h * PIon2                 ' so load the integral result, 
    Result(2) = errval                         ' its error value, 
    Result(3) = evals                          ' func evals 
    Result(4) = MicroTimer - Result(4)         ' and the calculation time 
 
exithere: 
     
    QUAD_DE1 = Result       ' Return the results as an array. 
 
    ' 3.  Reset the settings back to their original state 
    Application.ScreenUpdating = ScreenUpdateState 
    Application.DisplayStatusBar = StatusBarState 
    Application.Calculation = CalcState 
    Application.EnableEvents = EventsState 
    Application.DisplayAlerts = AlertsState 
 
End Function 
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Appendix B 
 
Tanh-Sinh C source code derived from the WP-34S Tanh-Sinh Python code (MIT licensed) 
 
Used in comparisons using identical parameters as qthsh except 𝑒𝑝𝑠 = 10!", to prevent early 
termination with large errors due to thr = 10n𝑒𝑝𝑠 = 3 ∙ 10!( allowing results with larger 
errors. 
 
double wp34s(double (*f)(double), double a, double b, int n, double eps) { 
  double thr = 10*sqrt(eps); // too generous for larger eps, e.g. eps=1e-9 
  double c = (a+b)/2; // center (mean) 
  double d = (b-a)/2; // half distance 
  double s = f(c); 
  double fp = 0, fm = 0; 
  double p, e, v, h = 2; 
double tmax = log(2/M_PI * log((d < 1 ? 2*d : 2) / eps)); 

  int k = 0; // level 
  do { 
    double q, t; 
    int j = 1; 
    v = s*d*M_PI/2*h; // last sum 
    p = 0; 
    h /= 2; 
    t = h; 
    do { 
      double ch = cosh(t); 
      double ecs = cosh(M_PI/2 * sqrt(ch*ch - 1)); // = cosh(pi/2*sinh(t)) 
      double w = 1/(ecs*ecs); 
      double r = sqrt(ecs*ecs - 1)/ecs; 
      double x = d*r; 
      if (c+x > a) { 
        double y = f(c+x); 
        if (isfinite(y)) 
          fp = y; 
      } 
      if (c-x < b) { 
        double y = f(c-x); 
        if (isfinite(y)) 
          fm = y; 
      } 
      q = ch*w*(fp+fm); 
      p += q; 
      j += 1+(k>0); 
      t = j*h; 
    } while (t <= tmax && fabs(q) > eps*fabs(p)); 
    s += p; 
    ++k; 
  } while (s && fabs(2*fabs(p) - fabs(s)) >= fabs(thr*s) && k <= n); 
  s *= d*M_PI/2*h; 
  e = fabs(v-s); 
  if (10*e >= fabs(s)) { 
    e += fabs(s); 
    s = 0; 
  } 
  return s; // result with estimated absolute error e 
}  
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Appendix C 
 
Exp-Sinh exp_sinh_opt_d optimized d results for 208 integrals, eps=1e-9 (GPL licensed) 
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Appendix D 
 
Romberg quadrature 
 
Note: condition i>2 prevents premature termination, which can be adjusted as needed. The 
relative error is tested in the convergence check, where the bound eps*fabs(Ru[i])+eps is 
increased by +eps to compare the absolute error to eps if the integral sum Ru[i] is close to zero. 
 
double qromb(double (*f)(double), double a, double b, int n, double eps) { 
  double R1[n], R2[n]; 
  double *Ro = &R1[0], *Ru = &R2[0]; 
  double h = b-a; 
  int i, j; 
  Ro[0] = (f(a)+f(b))*h/2; 
  for (i = 1; i < n; ++i) { 
    unsigned long long k = 1UL << i; 
    unsigned long long s = 1; 
    double sum = 0; 
    double *Rt; 
    h /= 2; 
    for (j = 1; j < k; j += 2) 
      sum += f(a+j*h); 
    Ru[0] = h*sum + Ro[0]/2; 
    for (j = 1; j <= i; ++j) { 
      s <<= 2; 
      Ru[j] = (s*Ru[j-1] - Ro[j-1])/(s-1); 
    } 
    if (i > 2 && fabs(Ro[i-1]-Ru[i]) <= eps*fabs(Ru[i])+eps) 
      return Ru[i]; 
    Rt = Ro; 
    Ro = Ru; 
    Ru = Rt; 
  } 
  return Ro[n-1]; 
} 
 
Adaptive Simpson quadrature 
 
double qasi(double (*f)(double), double a, double b, int n, double eps) { 
  double fa = f(a); 
  double fm = f((a+b)/2); 
  double fb = f(b); 
  double v  = (fa+4*fm+fb)*(b-a)/6; 
  return as(f, a, b, fa, fm, fb, v, eps, n, 0); 
} 
double as(double (*f)(double), double a, double b, double fa, double fm, 
          double fb, double v, double eps, int n, double t) { 
  double h  = (b-a)/2; 
  double f1 = f(a + h/2); 
  double f2 = f(b - h/2); 
  double sl = h*(fa + 4*f1 + fm)/6; 
  double sr = h*(fm + 4*f2 + fb)/6; 
  double s  = sl+sr; 
  double d  = (s-v)/15; 
  double m  = a+h; 



 49 

  if (n <= 0 || fabs(d) < eps) 
    return t + s + d; // note: fabs(d) can be used as error estimate 
  eps /= 2; 
  --n; 
  t = as(f, a, m, fa, f1, fm, sl, eps, n, t); 
  return as(f, m, b, fm, f2, fb, sr, eps, n, t); 
} 
 
The Adaptive Gauss-Kronrod (G10,K21) quadrature method (which also returns err, the 
absolute difference between the Gauss and Gauss-Kronrod approximations). 
 
double qakro(double (*f)(double), double a, double b, int n, double tol, 
             double eps, double *err) { 
  double c = (a+b)/2; 
  double d = (b-a)/2; 
  double e; 
  double r = gk(f, c, d, &e); 
  double s = d*r; 
  double t = fabs(s*tol); 
  if (tol == 0) 
    tol = t; 
  if (n > 0 && t < e && tol < e) { 
    s = qakro(f, a, c, n-1, t/2, eps, err); 
    s += qakro(f, c, b, n-1, t/2, eps, &e); 
    *err += e; 
    return s; 
  } 
  *err = e; 
  return s; 
} 
double gk(double (*f)(double), double c, double d, double *err) { 
  // abscissas and weights pre-calculated with Legendre Stieltjes polynomials 
  static const double abscissas[21] = { 
    0.00000000000000000e+00, 
    7.65265211334973338e-02, 
    1.52605465240922676e-01, 
    2.27785851141645078e-01, 
    3.01627868114913004e-01, 
    3.73706088715419561e-01, 
    4.43593175238725103e-01, 
    5.10867001950827098e-01, 
    5.75140446819710315e-01, 
    6.36053680726515025e-01, 
    6.93237656334751385e-01, 
    7.46331906460150793e-01, 
    7.95041428837551198e-01, 
    8.39116971822218823e-01, 
    8.78276811252281976e-01, 
    9.12234428251325906e-01, 
    9.40822633831754754e-01, 
    9.63971927277913791e-01, 
    9.81507877450250259e-01, 
    9.93128599185094925e-01, 
    9.98859031588277664e-01, 
  }; 
  static const double weights[21] = { 
    7.66007119179996564e-02, 
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    7.63778676720807367e-02, 
    7.57044976845566747e-02, 
    7.45828754004991890e-02, 
    7.30306903327866675e-02, 
    7.10544235534440683e-02, 
    6.86486729285216193e-02, 
    6.58345971336184221e-02, 
    6.26532375547811680e-02, 
    5.91114008806395724e-02, 
    5.51951053482859947e-02, 
    5.09445739237286919e-02, 
    4.64348218674976747e-02, 
    4.16688733279736863e-02, 
    3.66001697582007980e-02, 
    3.12873067770327990e-02, 
    2.58821336049511588e-02, 
    2.03883734612665236e-02, 
    1.46261692569712530e-02, 
    8.60026985564294220e-03, 
    3.07358371852053150e-03, 
  }; 
  static const double gauss_weights[10] = { 
    1.52753387130725851e-01, 
    1.49172986472603747e-01, 
    1.42096109318382051e-01, 
    1.31688638449176627e-01, 
    1.18194531961518417e-01, 
    1.01930119817240435e-01, 
    8.32767415767047487e-02, 
    6.26720483341090636e-02, 
    4.06014298003869413e-02, 
    1.76140071391521183e-02, 
  }; 
  double p = 0; // kronrod quadrature sum 
  double q = 0; // gauss quadrature sum 
  double fp, fm; 
  double e; 
  int i; 
  fp = f(c); 
  p = fp * weights[0]; 
  for (i = 1; i < 21; i += 2) { 
    fp = f(c + d * abscissas[i]); 
    fm = f(c – d * abscissas[i]); 
    p += (fp + fm) * weights[i]; 
    q += (fp + fm) * gauss_weights[i/2]; 
  } 
  for (i = 2; i < 21; i += 2) { 
    fp = f(c + d * abscissas[i]); 
    fm = f(c – d * abscissas[i]); 
    p += (fp + fm) * weights[i]; 
  } 
  *err = fabs(p - q); 
  e = fabs(2*p*1e-17); // optional, to take 1e-17 MachEps prec. into account 
  if (*err < e) 
    *err = e; 
  return p; 
} 
 


