
High-Performance XML Parsing and Validation with Permutation Phrase
Grammar Parsers

Wei Zhang and Robert A. van Engelen
Department of Computer Science, Florida State University, Tallahassee, FL 32306

{wzhang,engelen}@cs.fsu.edu

Abstract
The extensibility, flexibility, expressiveness, and

platform-neutrality of XML delivers key advantages for
interoperability. The interoperability of XML Web services
often comes at the price of reduced efficiency of message
composition, transfer, and parsing compared to simple
binary protocols. This paper presents a high-performance
XML parsing and validation technique that is time and
space optimal. A schema-specific parsing method is
developed that uses a two-stack push-down automaton
(PDA) for single-pass parsing and validation without
backtracking. The schema validity constraints are packed
in a compact parsing table derived from a permutation
phrase grammar. This approach reduces both the space
and time requirements of XML parsing and validation.
By contrast, other XML schema-specific parsing methods
trade efficiency for space (larger code and/or data size)
or trade space for efficiency (backtracking). Performance
results show that the method is significantly faster than
traditional validating and non-validating XML parsers.

1. Introduction

The Extensible Markup Language (XML) format is
widely adopted as a standard for exchanging structured in-
formation, particularly via Web services, to deliver rich con-
tent to users and business data processing systems. At-
tractive properties of XML include its extensibility, flexi-
bility, expressiveness, and platform-neutrality. These prop-
erties deliver key advantages for interoperability across a
wide spectrum of data-centric business processing systems.
Web services technologies and applications have built on
the success of XML by providing standardized delivery of
structurally and semantically rich content over the Web, as
defined by the Simple Object Access Protocol (SOAP) and
Web Service Definition Language (WSDL) W3C standards.

The interoperability of XML Web services often comes
at the price of reduced efficiency of message composition,
transfer, and parsing compared to simple binary protocols.
Parsing and validation of XML against a schema is expen-

sive [10,16], as well as the cost of deserialization into usable
objects [5, 7]. Several efforts have been made to address
the parsing and validation performance through the use of
schema-specific (grammar-based) parsers [6, 9, 12, 13, 17,
18, 20]. These parsers encode parsing states and validation
rules at compile time by exploiting schema structures and
validation rules. XML schema-specific parsing techniques
typically exhibit the following properties:
• Compile-time versus run-time parsers: all compile-

time parsing and validation approaches use specialized
compilation techniques to generate customized parsers
from a set of schemas. Most of these approaches
generate recursive descent parsers [9, 12, 17]. Run-
time approaches use generic parsers (drivers or en-
gines) and a grammar-like representation of a schema.
This approach is used in Deterministic Finite Automa-
ton (DFA) based parsing [18] and Table-Driven XML
(TDX) parsing [22, 23].

• Blocking versus non-blocking parsers: a blocking
parser acquires the main thread of control and may sus-
pend the entire program until sufficient XML content
arrives over the network to be operated on, typically
assisted using a timeout policy in a Web services con-
text. In a non-blocking parser the main program is al-
ways in control. Buffered data can be incrementally
supplied, rather than having the parser fetch all data at
once. The main program can invoke the parser at any
time to continue the parsing process. Parsing methods
based on recursive descent are blocking, because the
chain of recursive calls cannot be arbitrarily broken to
(temporarily) return control to the main program.

• Time-efficient versus space-efficient parsers: a
time-efficient parser limits the executed instruction se-
quence between each octet read from the network port
and the instantiated object. The overhead could be as
low as a hundred CPU cycles per octet, which has a
similar cycle penalty as a memory access. Time ef-
ficiency may require a hardcoding of many parsing
states to avoid backtracking, thereby increasing the
spatial resource requirements for parsing. On the other

2008 IEEE International Conference on Web Services

978-0-7695-3310-0/08 $25.00 © 2008 IEEE

DOI 10.1109/ICWS.2008.101

286

hand, space-efficient parsers use backtracking to limit
the hardcoding of parsing states. There is a clear sim-
ilarity of this property to the well-known theoretical
time-space differences of scanners based on DFA and
Nondeterministic Finite Automaton (NFA).

Current schema-specific XML parsers are either time ef-
ficient, but encode many states as a result, or space effi-
cient with backtracking. Some also limit the application
of schema validity constraints as a tradeoff to avoid exces-
sive backtracking, or mix time and space efficiency by using
backtracking when parsing states cannot be effectively rep-
resented at compile-time.

This paper presents a high-performance XML parsing
and validation technique that is both time and space op-
timal. This is achieved through the use of a table-driven
XML parsing and validation with permutation phrase gram-
mar. Our Permutation grammar Table-Driven XML pars-
ing (pTDX) method utilizes a compact tabular represen-
tation of schemas and a push-down automaton (PDA) for
single-pass parsing and validation without backtracking.
This work builds on our previous work [22, 23], yet is the
first successful attempt to achieve both space and time re-
quirements. To avoid backtracking on XML elements and
attributes defined by permutable XML schema constructs
such as unordered sequence of elements (xs:all) and at-
tributes (xs:attribute), we extend Backus Naur Form
(BNF) with support of permutation phrase grammar rep-
resentation of a schema. The permutation phrase grammar
is a compact representation of common XML element and
attribute permutations that have specific occurrence con-
straints. Thus, space optimality is ensured by encoding per-
mutations compactly. The permutation phrase grammar re-
quires a specialized recognizer, which is implemented by a
two-stack push-down automaton.

Our pTDX tool implements a run-time, asynchronous,
and predictive parsing engine. In contrast to gSOAP [17]
and XML Screamer [9], pTDX is not based on recursive
descent parsing, thus pTDX implements non-blocking pars-
ing operations. Furthermore, pTDX implements a schema-
directed scanner which significantly improves input scan-
ning performance. It scans tags and certain XML Schema
Definition (XSD) primitive type values and character data
(CDATA), and breaks these up into tokens for the parsing
engine. The parsing engine performs operations on tokens.
This is more efficient than operations at the string level that
most XML parsers do. Buffering of tokens is needed but
is only limited to scan ahead of namespace bindings, which
may be applicable to attributes prior to the occurrence of the
namespace binding.

In addition, unlike some validation parsers [6,13], pTDX
implements namespaces support in an efficient way. At the
lexical level, pTDX compares element and attribute tags as
well as other data content directly at the UTF-8 level, with

namespace normalization when elements and attributes are
namespace qualified. This method has similarities with
gSOAP and XML Screamer. XML Screamer optimizes
scanning by minimizing the redundant scanning of input
data. However, for some cases, the ideal of visiting each
character just once can not always be achieved and a back-
track scan is needed. By contrast to XML Screamer, pTDX
implements a non-backtracking scanning of input data that
guarantees each input character is visited at most once.

Similar to our initial work on TDX [22,23], pTDX is im-
plemented independent of XML schemas; the parsing table
and tokens are provided as hot-swappable modules. Con-
tent data validation routines can be pushed as semantic ac-
tions onto stacks and will be invoked by the parsing engine
at runtime. Thus, when a schema is updated or extended, a
new parsing table can be updated and loaded at run time.

The remainder of this paper is organized as follows. We
first give a brief description of pTDX architecture in Sec-
tion 2. In Section 3, we introduce permutation phrase gram-
mar and give mapping rules from XML schema components
to permutation phrase grammar. Permutation phrase parsing
is described in Section 4. Section 5 gives table-driven per-
mutation phrase grammar parsing using a two-stack PDA.
In Section 6, we describe how to optimize schema-directed
scanner. Performance evaluation is given in section 7 and
related work is discussed in Section 8. Conclusions are
drawn in Section 9.

2. Overview of pTDX
The pTDX approach consists of three stages: schema

specification processing, parsing table generation, and run-
time message processing, where the pTDX engine uses a
two-stack PDA to support permutation phrase parsing. A
set of non-permutation mapping rules for translating WSDL
or XML schema description into LL(1) grammar is defined
in [22, 23]. Unordered sequence elements xs:all and at-
tributes xs:attribute as well as xs:any are mapped
onto permutation phrase grammar rules (see Section 3).
The grammar rules preserve structural and semantic valid-
ity constraints imposed by XML schemas. Application-
specific events can be inserted, e.g. manually, into the pro-
ductions of generated grammar for automatic invocation
at running time before parser generator is called. The
parser generator generates parsing table, scanner, and con-
tent data validation routines. A schema-directed Flex [15]
description of the scanner is fed to Flex to generate DFA-
based XML token scanner in C. The scanner scans tags
and CDATA and breaks these up into tokens for the pars-
ing engine. The parsing engine then performs the well-
formedness checks, structural and content data validation,
and generates events to invoke application-specific actions
if applicable, and feeds data to the application’s back-end
by consulting the generated parsing table.

287

3. Permutation Phrase Mapping Rules
3.1. Permutation Phrase Grammar

A permutation phrase is a grammatical phrase that spec-
ifies a syntactic construct as any sequence of constituent el-
ements in which each element occurs exactly once and the
order is irrelevant [3, 4]. A permutation phrase grammar is
a context-free grammar (CFG) which contains production
v → p, where p is a permutation phrase. A permutation
phrase grammar offers an efficient way for presenting and
parsing free-ordered elements such as xs:all, xs:any,
and xs:attribute. Consider, for example, the follow-
ing schema fragment:

<xs:complexType>
<xs:all>
<xs:element name="a" type="xsd:integer"/>
<xs:element name="b" type="xsd:boolean"/>
<xs:element name="c" type="xsd:string"/>

</xs:all>
</xs:complexType>

This schema grammar can be represented using
Cameron’s permutation phrase notation [4] as

S → 〈〈a ‖ b ‖ c〉〉
It can be argued that permutation phrase grammar defi-

nitions can be expanded to EBNF grammar definitions by
summing up all possible permutations. However, each per-
mutation phrase composed of n constituents yields n! al-
ternative phrases in a CFG. For example, an element with
five attributes, not uncommon in the Web services, would
generate 120 different productions in the CFG. Further-
more, such grammar violates the LL(1) properties. Apply-
ing left-factoring to these productions to eliminate
such ambiguity introduces more productions.

3.2. Mapping xs:all and xs:attribute to
Permutation Phrase Rules

XML schema xs:all component specifies that its
child elements can appear in any order and that each
child element can occur zero or one time. Similarly,
xs:complexType may define an element that contains
a set of attributes specified by xs:attribute. Attributes
of an element can occur in any order. These schema com-
ponents are mapped to permutation phrase grammar.

The mapping Γ[[X]]N takes a schema component X and
a designated non-terminal N and returns a set of grammar
productions starting with non-terminal N for parsing in-
stances of X (see [22, 23] for the non-permutation phrase
mapping rules). We use Ai to represent an attribute compo-
nent. Table 1 lists parts of mapping rules using permutation
phrase grammar for xs:all and xs:attribute. Map-
ping rules for xs:any are defined in a similar way.

4. Permutation Phrase Parsing
Permutation phrases can be parsed efficiently by a two-

stack PDA. We first introduce an algorithm that parses a

permutation phrase without optional elements, i.e. no pro-
ductions that produce empty strings, and then we relax such
constraints to extend the solution to cover optional ele-
ments.

Assume a permutation phrase holds the following two
constraints:
• Nonemptiness: No constituent of any permutation de-

rives empty string, i.e. no optional elements.
• Uniqueness: No constituent of any permutations

shares the same first symbol, i.e., FIRST (X1) ∩
FIRST (X2) ∩ · · · ∩ FIRST (Xn) = ∅ for the per-
mutation phrase 〈〈X1 ‖ X2 ‖ · · · ‖ Xn〉〉.

A two-stack PDA can efficiently parse the permutation
phrase as follows: the constituent elements are first pushed
on to the “main stack”. The element on top of the main
stack is checked to see if it derives the current input token.
If it does, then the parser pops it off from the main stack and
pushes all the elements from an “auxiliary stack” onto the
main stack, and empties the auxiliary stack. The parser then
reads the next token from the input stream and checks again.
If the element on top of the main-stack does not derive the
current input token, it is popped off and saved by pushing it
onto the auxiliary stack. If no permutation phrase element
on the main stack derives the symbol, the parser reports an
error. Therefore the parser can detect errors as early as no
permutation element deriving the input symbol without con-
suming all permutation elements.

4.1. Handling Optional Elements
Technically, there is no mechanism to transform a gram-

mar with permutation phrases containing optional con-
stituent elements into an unambiguous context-free gram-
mar, because there is no way to determine where an empty
constituent is derived; i.e. whether it occurs before the first
nonempty element, between two nonempty elements, or af-
ter the last one. However, the order of the derivation is
of no importance to a permutation phrase. As proposed
by Cameron in [4], the strategy to parse such permutation
phrase is: “parse nonempty constituents as they are seen
until a symbol is encountered which is not a first symbol of
any of the constituents remaining to be parsed.” Fortunately,
the two-stack machine adopts this strategy intuitively: all
the optional elements are left on the auxiliary stack once all
the nonempty elements have been parsed. The permutation
parsing algorithm with optional elements support is given
in Algorithm 1.

4.2. Preserving the LL(1) Properties
Permutation mapping rules for xs:all and

xs:attribute do not introduce productions that violate
LL(1) properties of the grammar. The component xs:all
can only occur as the sole child of xs:complexType and

288

Rule# Translation
1 Γ[[<all> X1X2 . . . Xn </all>]]N = {N → 〈〈N1 ‖ N2 ‖ · · · ‖ Nn〉〉} ∪

Sn
i=1 Γ[[Xi]]Ni

2 Γ[[<complexType name=‘T’> XA1A2 . . . An </complexType>]]N = {T → T1T2} ∪ Γ[[X]]T1 ∪ {T2 → 〈〈T21 ‖ T22 ‖ · · · ‖ T2n〉〉}
∪

Sn
i=1 Γ[[Ai]]T2i

Table 1. Mapping xs:all and xs:complexType attributes to permutation phrase productions.

Algorithm 1: Parsing a permutation phrase with op-
tional elements.

Input: p→ 〈〈Y1 ‖ Y2 ‖ · · · ‖ Yn〉〉: permutation phrase production, ip:
input stream pointer)

Output: A sequence of constituent elements representing the left most
derivation for parsing the input if the input is in L(p); otherwise a
parsing error.

begin
for i← n to 1 do

push(Sm, Yi);
end
c = readnext(ip);
repeat

X ← top(Sm);
if c ∈ FIRST (X) then

output(X); pop(Sm); c = readnext(ip);
while Sa not empty do

t← top(Sa); pop(Sa); push(Sm, t);
end

else
push(Sa, X); pop(Sm);

end
until X is not a permutation phrase element or main stack is empty;
while Sa is not empty do

t← top(Sa);
if t is an optional element then

pop(Sa);
else

error();
end

end
end

can only have xs:element children. Thus no elements in
xs:all component within the same xs:complexType
shares the same tag names when reading qualified tag
names. Moreover, xs:all element can not occur within
xs:choice component. Therefore mapping xs:all to
permutation phrase grammar productions also preserves
the LL(1) properties. Similarly, mapping xs:attribute
to permutation phrase grammar preserves LL(1) properties.

5. Constructing Table-Driven XML Parsers
5.1. Parsing Table

Constructing the parsing table is similar to the method
used by TDX through the use of FIRST and FOLLOW
sets [1]. The FIRST and FOLLOW set definitions are ex-
tended to support the permutation grammar. The permuta-
tion grammar composition symbol is commutative and as-
sociative and the FIRST and FOLLOW sets are computed
as union of all elements. Consider a permutation produc-
tion, A → 〈〈X1 ‖ X2 ‖ · · · ‖ Xn〉〉, to compute the FIRST
set, apply the following rules:

1. FIRST (A) = FIRST (X1)∪FIRST (X2)∪· · ·∪FIRST (Xn).

2. Add ε to FIRST (A) if for all i, Xi
∗⇒ ε, where 1 ≤ i ≤ n.

3. FIRST (〈〈X1 ‖ X2 ‖ · · · ‖ Xn〉〉) = FIRST (X1) ∪
FIRST (X2) ∪ · · · ∪ FIRST (Xn).

4. Add ε to FIRST (〈〈X1 ‖ X2 ‖ · · · ‖ Xn〉〉) if for all i, Xi
∗⇒ ε, where

1 ≤ i ≤ n.

To compute the FOLLOW set, we apply the following rules:
1. FOLLOW (X1) = FIRST (X2) ∪ FIRST (X3) ∪ · · · ∪

FIRST (Xn).

2. FOLLOW (Xn) = FIRST (X1) ∪ FIRST (X2) ∪ · · · ∪
FIRST (Xn−1).

3. FOLLOW (Xi) = FIRST (X1) ∪ · · · ∪ FIRST (Xi−1) ∪

FIRST (Xi+1) ∪ · · · ∪ FIRST (Xn), where 1 < i < n.

5.2. Parsing Engine
The pTDX table-driven predictive permutation parser

uses an input buffer, two stacks, a predefined parsing table
with grammar definitions, and an output stream. The main
stack is initialized with $, the endmarker, and S, the start
symbol on top. The current symbol X , which is the symbol
on top of the main stack, and c, the current input symbol,
together with the state of the auxiliary stack, i.e. empty or
not, determine the parsing action.
• X is a terminal. If X = c 6= $, the parsing engine

pops X from the main stack and read the next input
symbol. If X = $, the parser halts and announces
success. Otherwise the engine announces an error.

• X is a nonterminal. The engine first checks the empty
status of the auxiliary stack. If it is not empty, the ac-
tion depends on whether X is a permutation nontermi-
nal or a regular one. If X is a permutation symbol, the
engine moves all symbols of the auxiliary stack into
the main stack. If X is a regular symbol, the engine
check to see if all symbols of the auxiliary stack can
generate empty string. An error is announced when a
symbol that cannot generate empty string is present.
The engine pops all symbols that can generate empty
string. If the auxiliary stack is empty, the engine con-
sults the entry M [X, c] of the parsing table M , and
replaces X by the right hand side of the production,
with the left most symbol on top of the stack1.

6. Schema-Directed Scanner
6.1. Optimization by Leveraging Schema

Information
Input scanning performance is significantly improved by

efficiently leveraging schema information. When exactly
1We use X to represent a permutation constituent element symbol to

distinguish it from a regular symbol, e.g 〈〈X‖Y 〉〉 are represented as X, Y .

289

Test Schema Schema No. of Elts. Instance Instance Throughput (MB/Sec)
Case Filename Size (Bytes) <xs:all> Filename Size (Bytes) Validating Parsers Non-Validating

pTDX gSOAP Xerces DFA Expat
G21 2k g.xsd 4021 21 g.xml 2341 41 11 5 34 23
A50 64k a.xsd 3155 50 a 64k.xml 68060 33 10 3 38 26
A50 3k a.xsd 3155 50 a 3k 3016 31 8 3 38 21
B5 0.2k b.xsd 814 5 b.xml 291 24 3 3 26 13
B5 8k b.xsd 814 5 b 8k.xml 8232 40 19 7 44 37
A50 16k a.xsd 4021 50 a50 16k 17156 32 11 10 39 26
A2 0.3k a2.xsd 569 2 a2 0.3k 341 28 3 2 31 12
A4 0.4k a4.xsd 668 4 a4 0.4k 452 32 4 2 35 14
A8 0.6k a8.xsd 881 8 a8 0.6k 678 34 5 4 38 16
A16 1k a16.xsd 1314 16 a16 1k 1124 35 6 2 39 18
A32 2k a32.xsd 2190 32 a32 2k 2036 36 8 3 39 20
A32 4k a32.xsd 2190 32 a32 4k 3886 34 10 3 42 22
A32 8k a32.xsd 2190 32 a32 8k 7584 35 10 3 42 25
A32 16k a32.xsd 2190 32 a32 16k 16826 35 17 2 38 25
A32 32k a32.xsd 2190 32 a32 32k 33462 36 11 4 42 26

Table 2. Test Cases and measurements.

Algorithm 2: Predictive Permutation Parsing
Input: A string w and a parsing table M for permutation grammar Gp

Output: If w is in L(Gp), a leftmost derivation of w; otherwise, an error
indication

Initially, the parser is in a configuration in which it has $S on the main stack
Sm with S, the start symbol of the grammar Gp on top. The auxiliary stack
Sa is initialized empty. The current input c points to the first symbol of w$.;
repeat

X ← top(Sm);
if X is a terminal or $ then

if X = c then
pop(Sm);
c← read next(input)

else
error();

end
else

/*X is either a permutation nonterminal or a regular terminal. */
pop(Sm);
if Sa is empty then

if M [X, c] = X → Y1 . . . Yn or
M [X, c] = X → 〈〈Y1 ‖ · · · ‖ Yk〉〉 then

for i← k to 1 do
if M [X, c] = X → 〈〈Y1 ‖ · · · ‖ Yk〉〉 then

push(Sm, Yi)
else

push(Sm, Yi);
end

end
output(M [X, c]);

else
error();

end
else

/*Auxiliary stack has permutation nonterminals left. */
if X is a permutation nonterminal then

while Saux is not empty do
t = top(Sa); push(Sm, t); pop(Sa);

end
else

/*X is a regular nonterminal; If the nonterminals left in
auxiliary stack can generate empty string. */

while Saux is not empty and no error is found do
t← top(Saux);
if t

∗⇒ ε then
output(“t→ ε”);

else
error();

end
end

end
end

end
until X = $;

one element is expected, then scanning for that particular
tag, rather than the generic element production, is signifi-
cantly more effective since it only amounts to matching the
tag name. Similarly, when a specific xs:type is expected
for an element of simple type, scanning that specific type is
preferable. For example, when an xs:boolean of an el-
ement content data is expected, scanning the specific string
“true” or “false” turns out to be more efficient than scan-
ning the generic string first and then comparing the string
to see if it is either “true” or “false”. By using carefully de-
signed Flex regular expression and efficient use of Flex [15]
start conditions, the Flex description of the pTDX scanner
can be significantly optimized to the schema. Consider for
example the following schema fragment:

<xs:element name="c">
<xs:complexType>
<xs:all>
<xs:element name="a" type="xs:integer"/>
<xs:element name="b" type="xs:boolean"/>

</xs:all>
</xs:complexType>

</xs:element>

The above schema fragment specifies an element "c"
that has two children elements "a" of type xs:integer,
and "b" of type xs:boolean. The generated Flex de-
scription of the specialized scanner is shown in Figure 1.

This generated Flex specification exactly drives the scan-
ner to initially scan the start or end tag of element "c" be-
cause it is in the Flex start condition INITIAL by default.
When the start tag of the element "c" is seen, the scanner
goes to start condition C CONTENT, in which start tag of ei-
ther element "a" or element "b" can be exactly expected.
When the start tag of element "a" is seen, the scanner goes
to the start condition A CONTENT, where digital numbers
are expected to be met (refer [15] for more details of Flex).

6.2. Tokenization

The overall performance can be improved by tokeniza-
tion because matching tokens once is more efficient than
repeatedly comparing strings. The scanner of pTDX breaks

290

int-type [0-9]+
%x A CONTENT
%x B CONTENT
%x C CONTENT
%x A CLOSE
%x B CLOSE
%%
"<c>" {BEGIN(C CONTENT);}
<C CONTENT>"<a>" {BEGIN(A CONTENT)};
<C CONTENT>"" {BEGIN(B CONTENT)};
<C CONTENT>"</c>" {BEGIN(INITIAL)};
<C CONTENT>. {error()};
<A CONTENT>{int-type} {BEGIN(A CLOSE)};
<A CONTENT>. {error val()};
<B CONTENT>"true" {BEGIN(B CLOSE)};
<B CONTENT>"false" {BEGIN(B CLOSE)};
<B CONTENT>. {error val()};
<A CLOSE>"" {BEGIN(C CONTENT)};
<A CLOSE,B CLOSE>". {error()};
<B CLOSE>". {error()};

Figure 1. Generated Flex description of the
specialized scanner for element "c" consist-
ing of two children elements "a" and "b" of
type xs:integer and xs:boolean respec-
tively (simplified for readability).

input data into normalized tokens for the parsing engine.
All tag names and all content data that can be represented
as integers such as xs:boolean are tokenized and nor-
malized.

6.3. Elimination of Backtracking
Scanning performance can be greatly improved by elim-

inating redundant scanning over the input. Through the use
of carefully designed Flex start conditions and rules, pTDX
scanner avoids backtracking, i.e. it guarantees that visiting
of each character of input data is just once. Consider the
same example used in [9], the following two XML elements
within an xs:integer:

<e>123456</e>
<e>123<!-- comment -->456</e>

Both two elements represent the same integer although
the second form is very uncommon. At this level, most
XML parsers scan the integer in the second form with back-
tracking and retrying with a different deserializer. However,
pTDX scanner can avoid backtracking using three rules.
One rule scans and discards the comment. Another rule
scans the integer and pushes the integer onto a cached stack.
The third one scans the end tag of the element. Upon the end
tag is met, the scanner assemblies the integer for the parsing
engine.

6.4. Start Tag Processing and Namespaces
Optimization

XML Namespaces [21] pose some challenges for a high
performance XML parser or validator. Within the start tag,
element tag name and attribute name(s) can not be parsed
until the namespace binding is resolved, whether qualified
or not. However, there is no way to determine if a QName

will be redefined or the default namespace will be changed
until the last attribute within the tag has been seen. The
strategy is to scan and cache all the tags into a queue and
namespaces onto a stack (or using hash). When the clos-
ing delimiter ‘>’ is met, the scanner emits the tokens by
consulting the namespaces stack.

6.5. Early Error Detecting

The pTDX engine is capable of detecting early pars-
ing errors during scanning stage in some cases. An
XML Schema provides the scanner with information about
whether an element or an attribute is required or optional,
and what is specific type of the content data. A well-
formedness error is announces when a required tag name
is expected and not present. A validation error is issued
when a specific data type is expected and no such data of
that type present. For example, Figure 1 indicates that a
validation error is issued when neither “true” nor “false” is
present when the scanner is the <B CONTENT> condition.

7. Performance Evaluation
Benchmarks were chosen to measure the performance

of the parsers for different schema structures. To this end,
we choose industry-quality XML-based Web services for
our tests. Each test instance consists of a string of UTF-
8 XML content stored in continuous memory buffer. File
system I/O or network overhead is not measured. Elements
of xs:all are randomly arranged in the message instance
for accurate measurements of free-ordered property. For the
same reason, attributes in xs:attribute are also placed
in a random way. Multiple instances are parsed from sep-
arate buffers to avoid any effect possibly caused by high
cache hit rates. The first run is intended to warm up the sys-
tem and is discarded. Average parsing time of a hundred
runs is reported. Time is measured as Wall Clock real time
elapsed using system call gettimeofday(). Memory usage
is measured using valgrind –tool=massif. All tests reported
here were conducted on a Dell Optiplex GX620 with a 3.0
GHz Intel Pentium D processor, and 2 GB of main mem-
ory, running Linux 2.6.20-1.2320. All parsers reported here
were compiled with GCC version 4.1.1 option -O2.

7.1. Parser Performance Compared

For the performance measurements, we compared
our pTDX with two widely used runtime-based parsers,
Xerces [2] and expat [14]. Xerces is an industry widely
used, popular high-performance parser. It supports both val-
idating and non-validating parsing mode with capability of
schema caching. We measured performance with validation
in SAX mode. We chose Xerces with version of 2.7.0 for
Linux.

291

Figure 2. Performance comparison of validat-
ing and non-validating parsers

Expat is a non-validating streaming XML parser that
only checks well-formedness of the input XML message. It
is considered one of the fastest non-validating parsers. The
latest version of 2.0.1 for Linux was chosen for the perfor-
mance comparison.

We also compared two compile-based parsers, DFA [18]
and gSOAP [17]. The gSOAP toolkit generates highly op-
timized and C-based XML validation parsers. Performance
comparisons [8, 18, 19] have shown that gSOAP has very
fast parsers and deserializers. The presented comparisons
are not completely fair for gSOAP whose timings include
parsing, validation, and deserialization while other parsers
do not deserialize data.

A DFA-based parser can significantly improve the XML
parsing by encoding parsing states with a DFA. However,
the states of DFA increases exponentially when the num-
ber of permutation elements increases. Thus the DFA-based
parser measured in this paper was implemented only to per-
form well-formdedness parsing. Because it has a similar
scanner as pTDX, it provides a base line for the pTDX val-
idation cost. It also provides a comparison with compile-
based parsing and runtime-based parsing.

No application-specific events were triggered in the mea-
surements, although pTDX offers the capability to trigger
events.

7.2. Test Cases

To test whether performance is related to some specific
schemas or to the size of the input message, we use a set
of schemas and combination of schema instances. Schema
g.xsd is directly taken from the GoogleSearch.wsdl,
containing 21 elements in xs:all. Schema a.xsd is
taken from AmazonSearch.wsdl and customized to
have 50 elements in xs:all. Schemas ai.xsd, where i =
2, 4, 8, 16, 32 are derived from a.xsd to have 2, 4, 8, 16, 32
elements in xs:all respectively. Schema b.xsd is a
very simple one used to test attributes in xs:attribute.
It has five attributes which is not uncommon in the real
Web services. The first part (before the symbol ‘ ’) of

Figure 3. Effect of number of elements in
xs:all of pTDX Parser.

a test case name denotes the schema name and the num-
ber of elements in xs:all or the number of attributes in
xs:attribute. The second part (after ‘ ’) represents
the approximate instances size in KB. Table 2 lists the test
cases.

7.3. Performance Discussion
Performance measurements were taken for each of the

chosen parsers on each of the test case. Performance was
measured in throughput MB/Sec. Test cases and the mea-
sured results are listed in Table 2. The throughput of pTDX
ranges from 24 MB/Sec to 40 MB/Sec for various mes-
sage sizes and different numbers of elements in xs:all
or xs:attribute. Compared to runtime parsers, pTDX
is on average 10 times faster than Xerces parser with valida-
tion, and can be up to 14 times faster than validation Xerces.
pTDX is also 2 times faster that fast non-validating Expat.

Compared to schema-specific (or compiler-based)
parsers, pTDX is still 4 times faster on average, and can be
up to 9 times faster than gSOAP (though gSOAP also dese-
rialized data in these performance statistics, while pTDX
does not). TDX-based non-validating parser is on aver-
age 1.2 times faster than validating pTDX, and 1.7 times
faster than non-validating Expat. These results indicate that
pTDX offers efficient technique for XML validation. It is
also indicated that the scanner takes significant portion of
the processing time. This is because both the TDX and
pTDX scanners also perform tokenization.

7.3.1 Scalability to Number of Elements in xs:all

The results in Figure 3 demonstrate that the number of
xs:all elements does not play a significant performance
penalty for all the parsers tested. The number of the ele-
ments in xs:all makes not much difference to through-
put. The number of elements in xs:all varies from 2 to
32, while the throughput only varies between 28.42 MB/Sec
and 36.26 MB/Sec for pTDX validating parser. This in-
dicates that pTDX parser has very good scalability to the
number of elements in xs:all and xs:attribute.

292

pTDX gSOAP Expat Xerces
Message Run Compile Run Compile Run Run

Size time time time time time time
(KB) (KB) (KB) (KB) (KB) (KB) (KB)

2 16 10 2 45 4 280
4 16 10 3 45 8 280
8 16 10 4 45 12 280

16 16 10 10 45 32 280
32 16 10 20 45 64 280
64 16 10 40 45 128 280

Table 3. Runtime and compile time memory
usage comparison (32 xs:all elements).

7.4. Memory Usage Analysis
Table 3 shows the runtime and compile time memory us-

age of different parsers specialized on a schema contain-
ing 32 xs:all elements. The results indicate that pTDX
requires a constant of 16KB rum time memory during the
parsing time. These memory consumption is used by the
scanner, constructed by the Flex. Flex generated scanner
requires buffering input string that it is 16KB by default.
pTDX requires 10KB to store productions, parsing tables,
and parsing stacks. gSOAP runtime memory usage in-
creases as the size of message document increases, partly
due to deserialization of objects. However, it still requires
45KB to decode parsing states at compile time. This is
four times larger than pTDX memory consumption. Thus,
pTDX implements a space optimal parser. The validating
Xerces parser and nonvalidating Expat parser are runtime
XML parsers, thus no compile-time overhead exists. The ta-
ble shows that Xerces consumes a constant of 280KB mem-
ory for parsing while Expat memory usage increases lin-
early as the size of XML document increases. Though not
shown in the table, the DFA-based parser requires 10KB
at compile time because it has similar scanner as pTDX.
However, the runtime memory measurement of the DFA-
based parser is not available because the measured DFA-
based parsers were only implemented as a well-formedness
parsers due to the fact that the number of DFA states has
factorial increase as the number of xs:all elements in-
creases. In general, the number of DFA states for recogniz-
ing the xs:all elements, N(n), is determined by:

N(n) =
n−1∑
j=0

j∏
i=0

(n − i), (1)

where n is the number of xs:all elements. Clearly it is
not practical without state reduction.

8. Related Work
There have been many efforts aimed to improve per-

formance of XML parsing and validation in the past re-
cent years. A promising technique is schema-specific XML

parsing [6, 9, 11–13, 16–18, 20, 22, 23]. Schema-specific
XML parsing achieves performance gains by exploiting
schema information to compose a parser at compile time
and utilizing the parsing states at runtime to verify schema
validation constraints.

Our previous work on the gSOAP toolkit [17] is the ear-
liest work on a schema-specific LL(1) recursive descent
parser for XML with namespace support and validation. To
our knowledge, this was also the first published work in
the literature to suggest an integrated approach to schema-
specific parsing by collapsing scanning, parsing, validation,
and deserialization into one phase. However, gSOAP imple-
ments a recursive descent the parser that involves function
calling overhead and blocking property.

In [18] Van Engelen presents a method that integrates
parsing and validation into a single stage by using a two-
level schema in which a lower-level Flex scanner drives a
DFA validation. The DFA is directly constructed from a
schema based on a set of mapping rules. However, this
approach can only process a non-cyclic subset of XML
schema due the limitations of regular languages described
by DFAs. Furthermore, this approach is not applicable in
practice for permutation phrase that consists of even not a
large number of elements due to the fact that the number of
DFA states increases exponentially.

Chiu et al. [6] also suggest an approach to merge all
aspects of low-level parsing and validation by extending
DFAs to nondeterministic generalized automata. They also
provide a technique for translating these into deterministic
generalized automata. However, translating from an NFA to
a DFA may blow up the number of states, thus limiting these
parsers to small occurrence constraints. Furthermore, their
approach does not support namespace, which is an essential
requirement for SOAP compliance.

Cardinality-constraint automata (CCA) [13] offers an ef-
ficient schema-aware XML parsing technique by extending
deterministic finite automata with cardinality constraints on
state transitions. These automata can easily take care of oc-
currences constraints imposed by schema. Unfortunately,
CCA does not provide mechanism for well-formedness
checking.

TDX [22, 23] provides an integrated approach that
combines well-formedness checking, content-model valida-
tion and application-specific event by pre-encoding pars-
ing states in a tabular form at compile time and by utiliz-
ing an efficient a push-down automaton at runtime. How-
ever, TDX relies on exponential enumerations of permuta-
tion phrases and is therefore not space optimal.

XML Screamer [9] presents an efficient parser genera-
tor that translates XML schema into a parser either in C
or Java code. Similar to gSOAP and the work by Chiu
et al., XML screamer also integrates deserialization with
scanning, parsing, and validation. It demonstrates that high-

293

performance can be obtained by careful design of APIs. The
tool uses recursive descent with backtracking, and covers a
large schema space. As with all recursive descent parsers,
XML Screamer is a blocking parser. More recent work that
builds on XML Screamer is iScreamer [11]. iScreamer is
a schema-directed interpretive XML parser and achieves
high-performance gains by using a carefully tuned set of
special-purpose bytecodes. iScreamer, does not support full
schema features. Also, its reliance on specialized bytecodes
may hinder its acceptance.

9. Conclusion

In this paper we presented a table-driven permutation
phrase grammar parsing technique that is time and space op-
timal for schema-specific XML parsing and validation. The
experimental pTDX parser implementation demonstrates
that high-performance parsing and validation of XML is
achieved both in terms of time and space. Free-ordered con-
straints such as xs:all, xs:attribute, and xs:any
are efficiently parsed and validated using a two-stack PDA
permutation phrase grammar parsing engine. Because the
method does not rely on recursive descent, the parser is
nonblocking and can be used when asynchronous message
passing is required.

References

[1] A. Aho, R. Sethi, and J. Ullman. Compilers: Principles,
Techniques and Tools. Addison-Wesley Publishing Com-
pany, Reading MA, 1985.

[2] Apache Foundation. Xerces XML Parser.
Ghttp://xerces.apache.org/.

[3] A. I. Baars, A. Löh, and S. D. Swierstra. Functional pearl
parsing permutation phrases. Journal of Functional Pro-
gramming, 14(6):635–646, 2004.

[4] R. D. Cameron. Extending context-free grammars with per-
mutation phrases. ACM Letters on Program Languages and
Systems, 2(1-4):85–94, 1993.

[5] K. Chiu, M. Govindaraju, and R. Bramley. Investigating
the limits of SOAP performance for scientific computing.
In HPDC ’02: Proceedings of the 11th IEEE International
Symposium on High Performance Distributed Computing,
page 246, Washington, DC, USA, 2002. IEEE Computer So-
ciety.

[6] K. Chiu and W. Lu. A compiler-based approach to schema-
specific XML parsing. In In proceedings of The First Inter-
national Workshop on High Performance XML Processing,
2004.

[7] M. Govindaraju, A. Slominski, V. Choppella, R. Bramley,
and D. Gannon. Requirements for and evaluation of RMI
protocols for scientific computing. In Supercomputing ’00:
Proceedings of the 2000 ACM/IEEE conference on Super-
computing (CDROM), pages 61–86, Washington, DC, USA,
2000. IEEE Computer Society.

[8] M. R. Head, M. Govindaraju, R. van Engelen, and W. Zhang.
Benchmarking XML processors for applications in Grid
Web services. In SC ’06: Proceedings of the 2006
ACM/IEEE conference on Supercomputing, pages 121–133,
New York, NY, USA, 2006. ACM.

[9] M. G. Kostoulas, M. Matsa, N. Mendelsohn, E. Perkins,
A. Heifets, and M. Mercaldi. XML screamer: an integrated
approach to high performance XML parsing, validation and
deserialization. In WWW ’06: Proceedings of the 15th in-
ternational conference on World Wide Web, pages 93–102,
New York, NY, USA, 2006. ACM.

[10] W. Lowe, M. Noga, and T. Gaul. Foundations of fast com-
munication via XML. Annals of Software Engineering,
13:357–379, 2002.

[11] M. Matsa, E. Perkins, A. Heifets, M. G. Kostoulas, D. Silva,
N. Mendelsohn, and M. Leger. A high-performance inter-
pretive approach to schema-directed parsing. In WWW ’07:
Proceedings of the 16th international conference on World
Wide Web, pages 1093–1102, New York, NY, USA, 2007.
ACM.

[12] E. Perkins, M. Matsa, M. G. Kostoulas, A. Heifets, and
N. Mendelsohn. Generation of efficient parsers through di-
rect compilation of XML schema grammars. IBM Syst. J.,
45(2):225–244, 2006.

[13] F. Reuter. Cardinality automata: A core tech-
nology for efficient schema-aware parsers, 2003.
http://www.swarms.de/publications/cca.pdf.

[14] SourceForge.net. http://expat.sourceforge.net.
[15] sourceforge.net. Flex: The fast lexical analyzer.

http://flex.sourceforge.net/.
[16] H. S. Thompson and R. Tobin. Using finite state automata

to implement W3C XML schema content model validation
and restriction checking. In In Proceedings of XML Europe,
2003.

[17] R. van Engelen. The gSOAP toolkit 2.1, 2001.
http://gsoap2.sourceforge.net.

[18] R. van Engelen. Constructing finite state automata for high
performance XML Web services. In proceedings of the In-
ternational Symposium on Web Services (ISWS), 2004.

[19] R. van Engelen. A framework for service-oriented com-
puting with reusable C and C++ Web service components.
accepted for publication in ACM Transactions on Internet
Technologies, 2008.

[20] R. van Engelen and K. Gallivan. The gSOAP toolkit for Web
services and peer-to-peer computing networks. In proceed-
ings of the 2nd IEEE International Symposium on Cluster
Computing and the Grid, pages 128–135, Berlin, Germany,
May 2002.

[21] W3C. XML schema specification, October 2004.
Part1:http://www/w3c.org/TR/xmlschema-1/.

[22] W. Zhang and R. van Engelen. A table-driven streaming
XML parsing methodology for high-performance Web ser-
vices. In ICWS ’06: Proceedings of the IEEE International
Conference on Web Services (ICWS’06), pages 197–204,
Washington, DC, USA, 2006. IEEE Computer Society.

[23] W. Zhang and R. A. van Engelen. TDX: a high-performance
table-driven XML parser. In ACM-SE 44: Proceedings of
the 44th annual Southeast regional conference, pages 726–
731, New York, NY, USA, 2006. ACM.

294

